Asymptotically lacunary µ-statistical equivalence of generalized difference sequences in probabilistic normed spaces

Résumé

The current article introduces the notion of asymptotically lacunary $(\Delta^n,\mu)$-statistical equivalent sequence in the settings of a probabilistic norm $N$. Furthermore, the article presents the concepts of asymptotically $(\Delta^n,\mu)$-strongly Ces\'{a}ro equivalent sequences and asymptotically $(\Delta^n,\mu)$-strongly Ces\'{a}ro Orlicz equivalent sequences in the theory of probabilistic normed spaces and also investigates their various properties including some inclusion relations as well as some equivalent conditions in this new settings.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Biographie de l'auteur

Binod Chandra Tripathy, Tripura University

Department of Mathematics

 

Références

Alsina, C., Schweizer, B., Sklar, A., On the definition of a probabilistic normed space, Aequationes Math., 46, 91-98, (1993). https://doi.org/10.1007/BF01834000

Altin, Y., Et, M., Colak, R., Lacunary statistical and lacunary strongly convergence of generalized difference sequences in fuzzy numbers, Comput. Math. Appl., 52, 1011-1020, (2016). https://doi.org/10.1016/j.camwa.2006.03.025

Braha, N. L., On asymptotically ∆m lacunary statistical equivalent sequences, Appl. Math. Comput., 219, 280-288, (2012). https://doi.org/10.1016/j.amc.2012.06.016

Connor, J., The statistical and strong p-Ces'aro convergence of sequences, Analysis, 8, 47-63, (1988). https://doi.org/10.1524/anly.1988.8.12.47

Connor, J., Two valued measure and summability, Analysis, 10, 373-385, (1990). https://doi.org/10.1524/anly.1990.10.4.373

Esi, A., Ozdemir, M. K., Generalized ∆m-statistical convergence in probabilistic normed space, J. Comput. Appl. Math., 13(5), 923-932, (2011).

Esi, A., On asymptotically lacunay statistical equivalent sequences in probabilistic normed space, J. Math. Stat., 9(2), 144-148, (2013). https://doi.org/10.3844/jmssp.2013.144.148

Et, M., Colak, R., On some generalized difference sequence spaces, Soochow J. Math., 21(4), 377-386, (1995).

Fast, H., Sur la convergence statistique, Colloq. Math., 2, 241-244, (1951). https://doi.org/10.4064/cm-2-3-4-241-244

Frechet, M., Sur quelques points du calcul functionnel, Rend. Circ. Mat. Palermo, 22, 1-74, (1906). https://doi.org/10.1007/BF03018603

Freedman, A. R., Sember, J. J., Raphael, M. Some Cesa'ro-type summability spaces, Proc. Lond. Math. Soc., 37(3), 508-520, (1978). https://doi.org/10.1112/plms/s3-37.3.508

Fridy, J. A., Orhan, C., Lacunary statistical convergence, Pacific J. Math., 160, 43-51, (1993). https://doi.org/10.2140/pjm.1993.160.43

Fridy, J. A., Orhan, C., Statistical limit superior and inferior, Proc. Amer. Math. Soc., 125, 3625-3631, (1997). https://doi.org/10.1090/S0002-9939-97-04000-8

Guillen, B. L., Lallena, J. A., Sempi, C., Some classes of probabilistic normed spaces, Rend. Math., 17(7), 237-252, (1997).

Kizmaz, H., On certain sequence spaces, Canad. Math. Bull., 24(2), 169-176, (1981). https://doi.org/10.4153/CMB-1981-027-5

Marouf, M., Asymptotic equivalence and summability, Int. J. Math. Sci., 16(4), 755-762, (1993). https://doi.org/10.1155/S0161171293000948

Menger, K., Statistical metrices, Proc. Nat. Acad. Sci. USA., 28, 535-537, (1942). https://doi.org/10.1073/pnas.28.12.535

Patterson, R. F., On asymptotically statistically equivalent sequences, Demonstr. Math., 36(1), 149-153, (2003). https://doi.org/10.1515/dema-2003-0116

Patterson, R. F., Savas, E., On asymptotically lacunary statistical equivalent sequences, Thai J. Math., 4(2), 267-272, (2006).

Salat, T., On statistically convergent sequences of real numbers, Math. Slovaca, 30, 139-150, (1980).

Schweizer, B., Sklar, A., Probabilistic Metric Spaces, Elsevier, New York, (1983).

Sen, M., Et, M. Lacunary statistical and lacunary strongly convergence of generalized difference sequences in intuitionistic fuzzy normed linear spaces, Bol. Soc. Paran. Mat., 38(1), 117-129, (2020). https://doi.org/10.5269/bspm.v38i1.34814

Sen, M., Nath, S., Tripathy, B. C., Best approximation in quotient probabilistic normed space, J. Appl. Anal., 23(1), 53-57, (2017). https://doi.org/10.1515/jaa-2017-0008

Serstnev, A. N., Random normed spaces, questions of completeness, Kazan Gos. Univ. Uchen. Zap, 122(4), 3-20, (1962).

Steinhaus, H., Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2, 73-74, (1951).

Tripathy, B. C., Baruah, A., Lacunary statistically convergent and lacunary strongly convergent generalized difference sequences of fuzzy real numbers, Kyungpook Math. J., 50(4), 565-574, (2010). https://doi.org/10.5666/KMJ.2010.50.4.565

Tripathy, B. C., Dutta, H., On some lacunary difference sequence spaces defined by a sequence of Orlicz functions and q-lacunary ∆nm-statistical convergence, An. S¸tiint¸. Univ. "Ovidius" Constant¸a Ser. Mat, 20(1), 417-430, (2012). https://doi.org/10.2478/v10309-012-0028-1

Tripathy, B. C., Goswami, R., On triple difference sequences of real numbers in probabilistic normed spaces, Proyecciones, 33(2), 157-174, (2014). https://doi.org/10.4067/S0716-09172014000200003

Tripathy, B. C., Goswami, R., Multiple sequences in probabilistic normed spaces, Afr. Mat., 26(5-6), 753-760, (2015). https://doi.org/10.1007/s13370-014-0243-1

Tripathy, B. C., Goswami, R., Fuzzy real valued p-absolutely summable multiple sequences in probabilistic normed spaces, Afr. Mat., 26(7-8), 1281-1289, (2015). https://doi.org/10.1007/s13370-014-0280-9

Tripathy, B. C., Goswami, R., Statistically convergent multiple sequences in probabilistic normed spaces, U.P.B. Sci. Bull., Ser. A, 78(4), 83-94, (2016).

Tripathy, B. C., Hazarika, B., Choudhary, B., Lacunary I-convergent sequences, Kyungpook Math. J., 52(4), 473-482, (2012). https://doi.org/10.5666/KMJ.2012.52.4.473

Publiée
2022-12-23
Rubrique
Articles