Mathematical behavior of solutions of the Kirchhoff type equation with logarithmic nonlinearity
Abstract
We consider the existence and decay estimates of solutions for Kirchhoff type equation with damping logarithmic source term. We proved global existence of solutions under suitable conditons by potential well method and the decay estimates result of the solutions for subcritical energy level.
Downloads
References
M. M. Al-Gharabli, S. A. Messaoudi, Existence and a general decay result for a plate equation with nonlinear damping and a logarithmic source term, Journal of Evolution Equations, 18(1) (2018), 105-125. https://doi.org/10.1007/s00028-017-0392-4
M. M. Al-Gharabli, S. A. Messaoudi, The existence and the asymptotic behavior of a plate equation with frictional damping and a logarithmic source term, J. Math. Anal. Appl., (454) (2017), 1114-1128. https://doi.org/10.1016/j.jmaa.2017.05.030
W. F. Ames , Nonlinear Partial Differantial Equations in Engineering, Academic Press, (1972).
I. Bialynicki-Birula, J. Mycielski, Nonlinear wave mechanics, Ann. Phys.,100(1-2) (1976), 62-93. https://doi.org/10.1016/0003-4916(76)90057-9
S. Boulaaras, A. Draifia, M. Alnegga, Polynomial decay rate for Kirchhoff type in viscoelasticity with logarithmic nonlinearity and not necassarily decreasing kernel, Symmetry, 11(2) (2019), 1-24. https://doi.org/10.3390/sym11020226
T. Cazenave, A. Haraux, Equations d'evolution avec non lin'earit'e logarithmique, Ann. Fac. Sci. Toulouse 2(1) (1980), 21-51. https://doi.org/10.5802/afst.543
Y. Chen, R.Xu, Global well-posedness of solutions for fourth order dispersive wave equation with nonlinear weak damping, linear strong damping and logarithmic nonlinearity, Nonlinear Anal., (2020) 1-39 (in press). https://doi.org/10.1016/j.na.2019.111664
P. Gorka, Logarithmic Klein-Gordon equation, Acta Phys. Pol. B 40(1) (2009), 59-66.
S. Goyal, P. K. Mishra, K.Sreenadh, n-Kirchhoff type equations with exponential nonlinearities, RACSAM, 110 (2016), 219-245. https://doi.org/10.1007/s13398-015-0230-x
G. Li, L. Hong, W. Liu, Global nonexistence of solutions for viscoelastic wave equations of Kirchoff type with high energy, J. Funct. Anal, Appl. Spaces, no: 530861 (2012),1-15. https://doi.org/10.1155/2012/530861
T. Matsuyama, R. Ikehata, On global solutions and energy decay for the wave equations of Kirchoff type with nonlinear damping terms, J. Math. Anal. Appl. 204 (3) (1996) , 729-753. https://doi.org/10.1006/jmaa.1996.0464
C. N. Le , X. T. Le, Global solution and blow up for a class of Pseudo p-Laplacian evolution equations with logarithmic nonlinearity, Comput. Math. Appl., 73(9) (2017), 2076-2091. https://doi.org/10.1016/j.camwa.2017.02.030
H. Li, Blow-up of Solutions to a p-Kirchhoff-Type Parabolic Equation with General Nonlinearity, J. Dyn. Control Syst., 26 (2020), 383-392. https://doi.org/10.1007/s10883-019-09463-4
K. Ono, On global solutions and blow up solutions of nonlinear Kirchhoff strings with nonlinear dissipation, J. Math. Anal. Appl., 216 (1997), 321-342. https://doi.org/10.1006/jmaa.1997.5697
A. Peyravi, General stability and exponential growth for a class of semi-linear wave equations with logarithmic source and memory terms., Appl. Math. Optim., 81 (2020), 545-561. https://doi.org/10.1007/s00245-018-9508-7
E. Piskin, N. Irkıl, Mathematical Behavior of Solutions of Fourth-Order Hyperbolic Equation with Logarithmic Source Term, CPOST, 2(1) (2019), 27-36.
E. Piskin, N. Irkıl, Well-posedness results for a sixth-order logarithmic Boussinesq equation, Filomat, 33(13) (2019), 3985-4000. https://doi.org/10.2298/FIL1913985P
E. Piskin, N. Irkıl, Mathematical behaviour of solutions of the Kirchhoff type equation with logarithmic nonlinearity, AIP Conference Proceedings, 2183 (1) (2019), 090004-090008. https://doi.org/10.1063/1.5136208
J. Sun, On the Kirchhoff type equations in RN , arXiv: 1908.01326v1
H. Xu, Existence of positive solutions for the nonlinear Kirchhoff type equations in RN , J. Math. Anal. Appl., 482 (2) (2020), 1-15. https://doi.org/10.1016/j.jmaa.2019.123593
Y. Yang, J. Li, T. Yu, Qualitative analysis of solutions for a class of Kirchhoff equation with linear strong damping term, nonlinear weak damping term and power-type logarithmic source term, Appl. Numer. Math., 141 (2019), 263-285. https://doi.org/10.1016/j.apnum.2019.01.002
Y. Ye, Logarithmic viscoelastic wave equation in three dimensional space, Appl. Anal., (2019) 1-18 (in press).
J. Wang, Existence and uniqueness of positive solutions for Kirchhoff type beam equations, arXiv:2003.04746v1. https://doi.org/10.14232/ejqtde.2020.1.61
S. Woinowsky- Krieger, The effect of an axial force on the vibration of hinged bars, J. Appl. Mech., 17 (1950), 35-36. https://doi.org/10.1115/1.4010053
H. Zhang , G. Liu, Q. Hu, Initial boundary value problem for class wave equation with logarithmic source term, Acta Math. Scientia, (2019), 1-13 (in press).
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).