Existence of entropy solutions of the anisotropic elliptic nonlinear problem with measure data in weighted Sobolev space
Resumo
This paper is devoted to study the following nonlinear anisotropic elliptic unilateral problem
\begin{equation*}
\begin{cases}
A\,u -\mbox{div}\,\phi(u)=\mu \quad \mbox{in} \qquad \Omega \\
\;u=0 \qquad \mbox{on} \quad \partial \Omega ,
\end{cases}
\end{equation*}
where the right hand side $\,\mu\;$ belongs to $\; L^1(\Omega)+ W_{0}^{-1,\overrightarrow{p}'} (\Omega,\ \overrightarrow{\omega}^*)$. The operator $\displaystyle A\,u=-\sum_{i=1}^{N}\partial_{i}\,a_{i}(x,\ u,\ \nabla u)$ is a Leray-Lions anisotropic operator acting from $\; W_{0}^{1,\overrightarrow{p}} (\Omega,\ \overrightarrow{\omega})\;$ into its dual $\; W_{0}^{-1,\overrightarrow{p}'} (\Omega,\ \overrightarrow{\omega}^*)$ and $\phi_{i}\in C^{0}(\mathbb{R},\mathbb{R})$.
Downloads
Referências
Abbassi, A., Azroul, E., Barbara, A., Degenerate p(x)-elliptic equation with second membre in L1, Advances in Science, Technology and Engineering Systems Journal. Vol. 2, No. 5, 45-54 (2017). https://doi.org/10.25046/aj020509
Adams, R., Sobolev spaces, Academic Press, New York (1975).
Akdim, Y., Azroul, E. and Benkirane, A., Existence of solutions for quasilinear degenerate elliptic equations, Electronic Journal of Differential Equations (EJDE), vol. 2001, p. Paper No. 71, 19, (2001).
Akdim, Y., Allalou, C. and Salmani, A., Existence of Solutions for Some Nonlinear Elliptic Anisotropic Unilateral Problems with Lower Order Terms, Moroccan Journal of Pure and Applied Analysis, 4(2), 171-188, (2018). https://doi.org/10.1515/mjpaa-2018-0014
Azroul, E., Benboubker, M. B., Hjiaj, H. and Yazough, C., Existence of solutions for a class of obstacle problems with L1 -data and without sign condition, Afrika Matematika, 27(5-6), 795-813 (2016). https://doi.org/10.1007/s13370-015-0375-y
Azroul, E., Benboubker, M. B., Ouaro, S., The obstacle problem associated with nonlinear elliptic equations in generalized Sobolev spaces Nonlinear Dyn. Syst. Theory 14(3), 223-242 (2014).
Benilan, P., Boccardo, L., Gallouet, T., Gariepy, R., Pierre, M. and Vazquez, J. L., An L1 theory of existence and uniqueness of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa, Vol. 22, n. 2, pp. 240-273, (1995).
Benkirane, A. and Elmahi, A., Strongly nonlinear elliptic unilateral problems having natural growth terms and L1 data, Rendiconti di matematica, Serie VII, 18, 289-303, (1998).
Benkirane, A., Chrif, M. and El Manouni, S., Existence results for strongly nonlinear elliptic equations of infinite order, Z. Anal. Anwend. (J. Anal. Appl.) 26, 303−312, (2007). https://doi.org/10.4171/ZAA/1325
Boccardo, L., Gallouet, T. and Marcellini, P., Anisotropic equations in L1 , Differential Integral Equations 1, 209- 212, (1996).
Boccardo, L., Gallouet, T. and and Orsina, L., Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Annales de l'Institut Henri Poincare (C) Non Linear Analysis. Vol. 13. No. 5. Elsevier Masson, (1996). https://doi.org/10.1016/s0294-1449(16)30113-5
Brezis, H. and Strauss, W., Semilinear second-order elliptic equations in L1, J. Math. Soc. Japan, 25(4), 565-590, (1973). https://doi.org/10.2969/jmsj/02540565
Chrif, M., and El Manouni, S., Anisotropic equations in weighted Sobolev spaces of higher order, Ricerche di matematica, 58(1), 1-14, (2009). https://doi.org/10.1007/s11587-009-0045-1
Lions, J. L., Quelques methodes de resolution des problemes aux limites non lineaires, Dunod, (1969).
Prignet, A., Remarks on existence and uniqueness of solutions of elliptic problems with right-hand side measures, Rend. Mat., Vol. 15, pp. 321-337, (1995).
Salmani, A., Akdim, Y. and Redwane, H., Entropy solutions of anisotropic elliptic nonlinear obstacle problem with measure data. Ricerche di Matematica,Vol.69(1) 121-151 (2020). https://doi.org/10.1007/s11587-019-00452-0
Serrin, J., Pathological solutions of elliptic differential equations, Ann. Scuola Norm. Sup.Pisa, Vol. 18, pp. 385-387, (1964).
Yazough, C., Azroul, E. and Redwane, H., Existence of solutions for some nonlinear elliptic unilateral problem with measure data, Electron. J. Qual. Theory Differ. Equ. 43, 1-21 (2013) https://doi.org/10.14232/ejqtde.2013.1.43
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).