A note on closure spaces determined by intersections
Résumé
In this work, we study a kind of closure systems (c.s.) that are defined by means of intersections of subsets of a support X with a (fixed) closed set T. These systems (which will be indicated by M(T)-spaces) can be understood as a generalization of the usual relative subspaces. Several results (referred to continuity and to the ordered structure of families of M(T)-spaces) are shown here. In addition, we study the transference of properties from the ``original closure spaces (X,K) to the spaces (X,M(T)). Among them, we are interested mainly in finitariness and in structurality. In this study of transference, we focus our analyisis on the c.s. usually known as abstract logics, and we show some results for them.
Téléchargements
Références
D. Brown; R. Suszko. Abstract Logics. Dissertationes Mathematicae, 102: 9–41 (1973).
C. Brunetta; V. Fernandez. Structurality and Finitariness of the Logics Defined by the M(T)-operators. LXVIII Meeting of Mathematical Argentinian Union. Universidad Nacional de Cuyo (2019).
S. Burris; H. Sankappanavar. A Course in Universal Algebra. Springer-Verlag, New York (1981). DOI: https://doi.org/10.1007/978-1-4613-8130-3
W. A. Carnielli; I. M. D’Ottaviano. Translations between logics: A manifesto. Logique & Analyse, 40: 67 – 81 (1997).
N. da Costa; V. Subrahmanian; C. Vago. The Paraconsistent Logics Pτ . Zeitschrift fur mathematische Logik und Grundlagen der Mathematik, 37: 139 – 148 (1991). DOI: https://doi.org/10.1002/malq.19910370903
J. Dugundji. Topology. Allyn And Bacon, Boston (1966).
V. Fernandez; C. Brunetta. Meet-determined and Join-determined Abstract Logics. LXVI Meeting of Mathematical Argentinian Union. Universidad de Buenos Aires (2017).
J. M. Font; R. Jansana; D. Pigozzi. A Survey of Abstract Algebraic Logic. Studia Logica, 74: 13 – 97 (2003). DOI: https://doi.org/10.1023/A:1024621922509
J. M. Font. Abstract Algebraic Logic. An Introductory Textbook. College Publications, London (2016).
J. Halpern. Should Knowledge entail Belief? Journal of Philosophical Logic, 25: 483 – 494 (1996). DOI: https://doi.org/10.1007/BF00257382
J. Łos; R. Suszko. Remarks on Sentential Logics. Indagationes Mathematicae, 20: 178 – 183 (1958). DOI: https://doi.org/10.1016/S1385-7258(58)50024-9
N. Martin; S. Pollard. Closure Spaces and Logic. Kluwer Academic Publishers, Dordrecht (1996). DOI: https://doi.org/10.1007/978-1-4757-2506-3
S. Munoz-Venegas. Algebraization of Non-Structural Logics. Logic Journal of the IGPL, 14: 845 – 866 (2006). DOI: https://doi.org/10.1093/jigpal/jzl015
R. Wojcicki. Theory of Logical Calculi: Basic Theory of Consequence Operations. Kluwer Academic Publishers, Dordrecht (1988).
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).