Results of singular Direchelet problem involving the $p(x)$-laplacian with critical growth
Résumé
In this paper, we study the existence and multiplicity of solutions for Dirichlet singular elliptic problems involving
the $p(x)$-Laplace equation with critical growth. The technical approach is mainly based on the variational method combined with the genus theory.
Téléchargements
Références
C. O. Alves ., Jose L. P. Barreiro , Existence and multiplicity of solutions for a p(x)-Laplacian equation with critical growth J. Math. Anal. Appl. 403 (2013) 143-154 https://doi.org/10.1016/j.jmaa.2013.02.025
S. Antontsev, S. Shmarev, Handbook of Differential Equations, Stationary Partial Differ. Equ. 3 (2006). Chap. 1 https://doi.org/10.1016/S1874-5733(06)80005-7
M. Bocea, M. Mihˇailescu, Γ-convergence of power-law functionals with variable exponents, Nonlinear Anal. 73 (2010) 110-121. https://doi.org/10.1016/j.na.2010.03.004
M. Bocea, M. Mihˇailescu, C. Popovici, On the asymptotic behavior of variable exponent power-law functionals and applications, Ric. Mat. 59 (2010) 207-238. https://doi.org/10.1007/s11587-010-0081-x
J. F. Bonder, A. Silva, Concentration-compactness principle for variable exponent spaces and applications, Electron. J. Differential Equations 2010, No. 141, 1-18. MR2729462
A. Callegari, A. Nachman, A nonlinear singular boundary value problem in the theory of pseudoplastic fuids, SIAM J. Appl. Math. 38 (1980) 275-281 https://doi.org/10.1137/0138024
Y. Chen, S. Levine, R. Rao, Variable exponent, linear growth functionals in image restoration, SIAMJ. Appl. Math. 66 (2006) 1383-1406. https://doi.org/10.1137/050624522
D. Edmunds, J. Rakosnık; Sobolev embeddings with variable exponent, Studia Math. 143 (2000), no. 3, 267-293. MR1815935 (2001m:46072) https://doi.org/10.4064/sm-143-3-267-293
X. Fan, X. Han, Existence and multiplicity of solutions for p(x)-Laplacian equations in RN , Nonlinear Anal. 59 (2004) 173-188. https://doi.org/10.1016/S0362-546X(04)00254-8
X. Fan, Solutions for p(x)-Laplacian Dirichlet problems with singular coefficients ,J. Math. Anal. Appl. 312 (2005) 464-477. https://doi.org/10.1016/j.jmaa.2005.03.057
X. Fan, D. Zhao, On the spaces Lp(x) (Ω) and W m,p(x) (Ω) J. Math. Anal. Appl. 263 (2001) 424-446. https://doi.org/10.1006/jmaa.2000.7617
X. Fan, Q. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003) 1843-1852. https://doi.org/10.1016/S0362-546X(02)00150-5
A. Ferrero, F. Gazzola, Existence of Solutions for Singular Critical Growth Semilinear Elliptic Equations,Journal of Differential Equations 177, 494-522 (2001). https://doi.org/10.1006/jdeq.2000.3999
L. R. d. Freitas, Existencia e multiplicidade de soluc˜oes para uma classe de problemas quasilineares com crescimento crıtico exponencial, in: Tese de doutorado USP - S˜ao Carlos, 2010
Y. Fu, X. Zhang, A multiplicity result for p(x)-Laplacian problem in RN , Nonlinear Anal. 70 (2009) 2261-2269. https://doi.org/10.1016/j.na.2008.03.038
N. Ghoussoub, C. Yuan, Multiple Solutions For Quasi-Linear Pdes Involving The Critical Sobolev And Hardy Exponents, transactions of the american mathematical society, V. 352, Number 12, pp :5703-5743. https://doi.org/10.1090/S0002-9947-00-02560-5
Y. Li, Q. Guo, P. Niu, The existence of solutions for quasilinear elliptic problems with combined critical Sobolev-Hardy terms, J. Math. Anal. Appl. 388 (2012) 525-538. https://doi.org/10.1016/j.jmaa.2011.10.042
R. M. Khanghahia, A. Razania, Solutions for a Singular Elliptic Problem Involving the p(x)-Laplacian Published by Faculty of Sciences and Mathematics,University of Nis, Serbia, Available at: http://www.pmf.ni.ac.rs/filomat Filomat 32:14 (2018), 4841-4850 https://doi.org/10.2298/FIL1814841M
M. Massar, Existence of multiple solutions for a class of nonhomogeneous problems with critical growth, Electronic Journal of Qualitative Theory of Differential Equations 2017, No. 22, 1-18 https://doi.org/10.14232/ejqtde.2017.1.22
M. Mihailescu, On a class of nonlinear problems involving a p(x)-Laplace type operator, Czechoslovak Math. J. 58 (2008) 155--172. https://doi.org/10.1007/s10587-008-0011-1
Y. Mei, F. Yongqiang, L. Wang, Existence of Solutions for the p(x)-Laplacian Problem with the Critical Sobolev-Hardy Exponent, Hindawi Publishing Corporation Abstract and Applied Analysis V. 2012, Article ID 894925, 17 pages. https://doi.org/10.1155/2012/894925
P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations. In CBMS Regional Conference Series in Mathemat- ics, Vol. 65, American Mathematical Soceity, Providence (1986). https://doi.org/10.1090/cbms/065
D. Repovs; Stationary waves of Schr¨odinger-type equations with variable exponent, Anal. Appl., 13 (2015) ,645-661. https://doi.org/10.1142/S0219530514500420
A. Kristaly, V. Radulescu, C. Varga, Variational Principles in Mathematical Physics, Geometry, and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems, in: Encyclopedia of Mathematics and its Applications, vol. 136, Cambridge University Press, Cambridge, 2010.
W. Zhihui, W. Xinmin, A multiplicity result for quasilinear elliptic equations involving critical sobolev exponents, Nonlinear Anal. TMA 18 (1992) 559-567 https://doi.org/10.1016/0362-546X(92)90210-6
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



