Global dynamics of a discrete SEIR epidemic model with treatment
Résumé
The global dynamics of a discrete SEIR epidemic model with treatment has been considered. A unique positive solution for the proposed model with the positive initial conditions is obtained. The stability analysis of the disease-free equilibrium and endemic equilibrium have been investigated. It has been proved that the DFE is globally asymptotically stable when the basic reproduction number $\mathcal{R}_0\leq1$. The proposed model has a unique endemic equilibrium that is globally asymptotically stable whenever $\tilde{\mathcal{R}}_0>1$. The theoretical results are illustrated by a numerical simulation.
Téléchargements
Références
H. Alrabaiah, M.A. Safi, M. H. DarAssi, B. Al-Hdaibat, S. Ullah, M. A. Khan and S. A. Ali Shah (2020). Optimal controlanalysis of hepatitis B virus with treatment and vaccination.Results in Physics19103599. DOI: https://doi.org/10.1016/j.rinp.2020.103599
R. M. Anderson and R. M. May (1982). Population Biology of Infectious Diseases. Springer-Verlag, Berlin, Heidelrberg, New York. DOI: https://doi.org/10.1007/978-3-642-68635-1
C T Bauch, J O Lloyd-Smith, M P Coffee (2005). Dynamically modeling SARS and other newly emerging respiratoryillnesses: past, present, and future.Epidemiology16: 791-801. DOI: https://doi.org/10.1097/01.ede.0000181633.80269.4c
Y Bechah, C Capo, J L Mege, D Raoult (2008). Epidemic typhus.The Lancet infectious diseases8: 417-426. DOI: https://doi.org/10.1016/S1473-3099(08)70150-6
M. H DarAssi, M. A. Safi and B. Al-Hdaibat (2018). A delayed SEIR epidemic model with pulse vaccination and treat-ment.Nonlinear Studies25(3) : 1-16.
M. H DarAssi, M. A. Safi and M. Ahmad (2021). Global Dynamicsof a Discrete-Time MERS-Cov Model.Mathematics9(5): 563. DOI: https://doi.org/10.3390/math9050563
M. H DarAssi, M. A. Safi (2021). Analysis of an SIRS epidemicmodel for a disease geographic spread.Nonlinear Dy-namics and Systems Theory21(1): 56-67.
P Daszak, AA Cunningham, AD Hyat (2000). Emerging infectious diseases of wildlife–threats to biodiversity and humanhealth.Science287. DOI: https://doi.org/10.1126/science.287.5452.443
O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz (1990). On the definition and computation of the basic reproductionratio R0 in models for infectious disease in heterogeneous population.J. Math. Biol.28: 365-382. DOI: https://doi.org/10.1007/BF00178324
O. Diekmann, JAP Heesterbeek (2000). Mathematical epidemiology of infectious diseases.Chisteter: John Wiley &Son.
P. van den Driessche and J. Watmough (2002). Reproduction numbers and subthreshold endemic equilibria for com-partmental models of disease transmission.Math. Biosci.180: 29-48. DOI: https://doi.org/10.1016/S0025-5564(02)00108-6
X. Fan, L. Wang and Z. Teng (2016). Global dynamics for a class of discrete SEIRS epidemic models with generalnonlinear incidence.Advances in Difference Equations2016:123. DOI: https://doi.org/10.1186/s13662-016-0846-y
S Funk, M Salath́e, VAA Jansen (2010). Modelling the influence of human behaviour on the spread of infectious diseases:a review.Journal of the Royal Society50: 1247- 1256. DOI: https://doi.org/10.1098/rsif.2010.0142
H. W. Hethcote (2000). The mathematics of infectious diseases.SIAM Rev.42: 599-653. DOI: https://doi.org/10.1137/S0036144500371907
M. J. Keeling, P. Rohani (2008). Modeling infectious diseases in humans and animals.(Princeton Univ. Press. DOI: https://doi.org/10.1515/9781400841035
M. A. Khan, K. Khan, M. A. Safi and M.H. DarAssi (2020). A discrete model of TB dynamics in Khyber Pakhtunkhwa-Pakistan.CMES - Computer Modeling in Engineering and Sciences123(2): 777-795. DOI: https://doi.org/10.32604/cmes.2020.08208
J. P. LaSalle (1976). The Stability of Dynamical Systems. CBMS-NSF Regional Conf. Ser. in Appl. Math., SIAM,Philadelphia.
X. P. Li, Y. wang, M. A. Khan, M.Y. Alshahrani and T. Muhammad (2021). A dynamical study of SARS-COV-2: Astudy of third wave.Results in Physics29104705. DOI: https://doi.org/10.1016/j.rinp.2021.104705
X. P. Li, N. Gul, M. A. Khan, R.Bilal, A. Ali, M.Y. Alshahrani, T. Muhammad and S. Islam (2021). A new Hepatitis Bmodel in light of asymptomatic carriers and vaccination study through Atangana–Baleanu derivative.Results in Physics29104603.
J.D. Murray (1989). Mathematical Biology.Berlin: Springer-Verlag. DOI: https://doi.org/10.1007/978-3-662-08539-4
H. Sato, H Nakada, R Yamaguchi, M kami (2010). When shouldwe intervene to control the 2009 influenza A(H1N1)pandemic,European communicable disease bulletin15 DOI: https://doi.org/10.2807/ese.15.01.19455-en
M. A. Safi, A. B. Gumel, E.H. Elbasha (2013). Qualitative analysis of an age-structured SEIR epidemic model withtreatment.Applied Mathematics and Computation219: 10627-10642. DOI: https://doi.org/10.1016/j.amc.2013.03.126
M. A. Safi and M. H. DarAssi (2018). Mathematical analysisof a model for ectoparasite-borne diseases.Journal ofComputational Methods in Sciences and Engineering41(17) : 8248-8257. DOI: https://doi.org/10.1002/mma.5287
M. A. Safi and M. H. DarAssi (2019). Mathematical analysisof an age-structured HSV-2 model.Journal of ComputationalMethods in Sciences and Engineering19(3) 841-856. DOI: https://doi.org/10.3233/JCM-181111
M. A. Safi, B. Al-Hdaibat, M.H. DarAssi and M.A. Khan. Global dynamics for a discrete quarantine/isolation model(2021).Results in Physics21103788. DOI: https://doi.org/10.1016/j.rinp.2020.103788
N. Trebi (2017). Emerging and Neglected Infectious Diseases: Insights, Advances, and Challenges.BioMed ResearchInternational. DOI: https://doi.org/10.1155/2017/5245021
L. Wang, Q. Cui and Z. Teng (2013). Global dynamics in a class of discrete-time epidemic models with disease courses.Advances in Difference Equations2013: 57. DOI: https://doi.org/10.1186/1687-1847-2013-57
Y. Wang, Z. Teng and M. Rehim (2014). Lyapunov functions for a class of discrete SIRS models with nonlinear incidencerate and varying population sizes.Discrete Dynamics in Nature and Society2014:1-10 DOI: https://doi.org/10.1155/2014/472746
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).