On a new variant of I-convergence in topological spaces
Résumé
In this write-up, we mainly introduce b-I-convergence of sequences, b-convergence and b-Iconvergence of nets in topological spaces, and put forward some important topological investigations. Existence of b-ω-accumulation point is presented via admissible ideal and b-I-cluster point of sequence. It is shown that a map f : Z → W is quasi-b-irresolute if and only if for every net (s_d)_d∈D converging to zo, the image net (f(s_d)_d∈D) b-converges to f(z_o). Notion of b-I-cluster point of net is disclosed along with its a nice characterization as: ‘Corresponding to a given net s : D → Z, there exists a filter G on Z such that z_o ∈ Z is a b-I-cluster point of the net (s_d)_d∈D if and only if z_o is a b-cluster point of the filter G’. Another characterization
of b-I-cluster point of net with respect to a certain type of class of subsets is demonstrated. Further, we show that b-I-cluster point of a net in a b-compact space always exist.
Téléchargements
Références
A. Al-Omari and M. Noorani, On generalized b-closed sets, Bull. Malays. Math. Sci. Soc., (2) 32(1), 19-30, (2009).
A. Al-Omari and M.S.M. Noorani, Decomposition of continuity via b-open set, Bol. Soc. Paran. Mat., 26(1-2), 53-64, (2008), https://doi.org/10.5269/bspm.v26i1-2.7402.
A. Al-Omari and T. Noiri, On Ψ-operator in ideal m-spaces, Bol. Soc. Paran. Mat., 30(1), 53-66, (2012), https://doi.org/10.5269/bspm.v30i1.12787.
A. Al-Omari and T. Noiri, Weak forms of G- -open sets and decompositions of continuity via grills, Bol. Soc. Paran. Mat., 31(2), 19-29, (2013), https://doi.org/10.5269/bspm.v31i2.13551.
A. Al-Omari and T. Noiri, On quasi compact spaces and some functions, Bol. Soc. Paran. Mat., 36(4), 121-130, (2018), https://doi.org/10.5269/bspm.v36i4.31125.
D. Andrijevic, On b-open sets, Mat. Vesnik, 48, 59-646, (1996).
V. Balaz, J. Cervenansky, P. Kostyrko and T. Salat, I-convergence and I-continuity of real functions, Acta Math. (Nitra), 5, 43-50, (2002).
R.C. Buck, The measure theoretic approach to density, Amer. J. Math., 68, 560-580, (1946).
R.C. Buck, Generalized asymptotic density, Amer. J. Math., 75, 335-346, (1953).
M. Caldas and S. Jafari, On some applications of b-open sets in topological spaces, Kochi J. Math., 2, 11-19, (2007).
G. Di Maio and Lj. D. R. Kocinac, Statistical convergence in topology, Topology Appl., 156, 28-45, (2008).
E. Ekici and M. Caldas, Slightly -continuous functions, Bol. Soc. Parana. Mat., (3) 22(2), 63-74, (2004).
A.A. El-Atik, A study on some types of mappings on topological spaces, M.Sc Thesis, Egypt, Tanta University, (1997).
H. Fast, Sur la convergence statistique, Colloq. Math., 2, 241-244, (1951).
C. Granados, A new notion of convergence on ideal topological spaces, Sel. Mat., 7(2), 250-256, (2020).
H. Halberstem and K.F. Roth, Sequences, Springer, New York, (1993).
K.D. Joshi, Introduction to General Topology, Wiley, (1983).
K. Kuratowski, Topologie I, PWN, Warszawa, 1961.
B.K. Lahiri and P. Das, I and I_-convergence in topological spaces, Math. Bohemica, 130 (2), 153-260, (2005).
B.K. Lahiri and P. Das, I and I_-convergence of nets, Real Anal. Exchange, 33(2), 431-442, (2007/2008).
D.S. Mitrinovic, J. Sandor and B. Crstici, Handbok of Number Theory, Kluwer Acad. Publ. Dordrecht-Boston-London, (1996).
S. Modak, J. Hoque and Sk Selim, Homeomorphic image of some kernels, Cankaya Uni. J. Sci. Eng., 17(1), 052-062, (2020).
A.A. Nasef, On b-locally closed sets and related topics, Choas. Solitons and Fractals, 12, 1909-1915, (2001).
I. Niven and H.S. Zuckerman, An Introduction to the Theory of Numbers, 4th Ed., John Wiley, New York, 1980.
T. Noiri, A. Al-Omari and M. Noorani, On wb-open sets and b-Lindelof spaces, Eur. J. Pure Appl. Math., 1(3), 3-9, (2008).
J.H. Park, Strongly 0-b-continuous functions, Acta. Math. Hungar., 110(4), 347-359, (2006).
N. Rajesh and V. Vijayabharathi, Properties of b-compact spaces and b-closed spaces, Bol. Soc. Paran. Mat., 32(2), 237-247, (2014).
T.C.K. Raman and P.K. Biswas, On interrealtionship of b-Lindelof & second countable spaces as well as countably b-compact & sequentially b-compactness, Int. J. Eng. Res. Manag. Technol., 2(3), 57-63, (2015).
I.J. Schoengberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66, 361-375, (1959).
Copyright (c) 2024 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).