On the solution of evolution p(.)-Bilaplace equation with variable
Abstract
A high-order parabolic p(.)-Bilaplace equation with variable exponent is studied. The well-posedness at each time step of the problem in suitable Lebesgue Sobolev spaces with variable exponent with the help of nonlinear monotone operators theory is investigated. The solvability of the proposed problem as well as some regulrarity results are shown using Roth-Galerkin method.
Downloads
References
Kovaik, O. and Rakosnik, J., On the spaces Lp(x) (Ω) and W1,p(x) (Ω), Czechoslovak Math.J., 41(4), 592-618, (1991). DOI: https://doi.org/10.21136/CMJ.1991.102493
Samko, S., Convolution type operators in Lp(x) (Rn), Integral transform. Spec. Funct., 7,123-144, (1998). DOI: https://doi.org/10.1080/10652469808819191
Fan, X. L., Wang, S. Y. and Zhao, D., Density of C∞(Ω) in W1,p(x) (Ω) with discontinous exponent p(x), Math. Nachr., 279(1-3), 142-149, (2006). DOI: https://doi.org/10.1002/mana.200310351
Fan, X. L. and Zhao, D., On the spaces Lp(x) (Ω) and W1,p(x) (Ω), J. Math. Anal. Appl., 263, 424-446, (2001). DOI: https://doi.org/10.1006/jmaa.2000.7617
Diening, L., Harjulehto, P.i., Hasto, P. and Ruzicka, M., Lebesgue and Sobolev spaces with variable exponents, SPIN Springer’s internal project number. December 3, (2010). DOI: https://doi.org/10.1007/978-3-642-18363-8
Georgoulis, E. H. and Houston, P., Discontinuous Galerkin methods for the biharmonic problem, IMA J. Numer. Anal., 293, 573-594, (2009). DOI: https://doi.org/10.1093/imanum/drn015
Pryer, T., Discontinuous Galerkin methods for the p-biharmonic equation from a discrete variational perspective, Electr. Transac. Nume. Anal., 41, 328-349, 2014.
Lindqvist, P.,Notes on the p-Laplace equation, NO-7491, Trondheim, Norway.
Becache, E., Ciarlet, P., Hazard, C., and Luneville, E., La methode des elements finis De la theorie a la pratique II. Complements, Les presse de l’ENSTA.
Li, H., The W1,p stability of the Ritz projection on graded meshes, Math. Comput., 86303, 49-74, (2017). DOI: https://doi.org/10.1090/mcom/3101
Sandri, D., Sur l’approximation numerique des ecoulements quasi-newtoniens dont la viscosite suit la loi puissance ou la loi de Carreau, RAIRO Model. Math. Anal. Number, 272, 131-155, (1993). DOI: https://doi.org/10.1051/m2an/1993270201311
Gyulov, T. and Moro sanu, G.,On a class of boundary value problems involving the pbiharmonic operator, J. Math. Anal. Appl. 367(1), 43-57, (2010). DOI: https://doi.org/10.1016/j.jmaa.2009.12.022
Lazer, A. and McKenna, P., Large-amplitude periodic oscillations in suspension bridges: some newconnections with nonlinear analysis, Siam Review, 32(4), 537-578, (1990). DOI: https://doi.org/10.1137/1032120
Theljani, A., Belhachmi, Z. and Moakher, M., High-order anisotropic diffusion operators in spaces of variable exponents and application to image inpainting and restoration problems, Nonl. Anal.: Real World Appl., 47, 251-271, (2019). DOI: https://doi.org/10.1016/j.nonrwa.2018.10.013
Chaoui, A. and Hallaci, A., On the solution of a fractional diffusion integrodifferential equation with Rothe time discretization, Numerical Functional Analysis and Optimization, DOI : 10.1080/01630563.2018.1424200.
Chaoui, A. and Guezane-Lakoud, A., Solution to an integrodifferential equation with integral condition, Applied Mathematics and Computation, 266(2015) 903-908. DOI: https://doi.org/10.1016/j.amc.2015.06.004
Chaoui, A. and Rezgui, N., Solution to fractional pseudoparabolic equation with fractional integral condition, Red. Circ. Mat. Palermo, II. Ser., DOI 10.1007/s12215-017-0306-x.
Crouzeix, M. and Thomee, V., The stability in Lp and W1 p of the L2-projection onto finite element function spaces, Math. Comp. 48 (1987), no. 178, 521–532. MR878688(88f:41016). DOI: https://doi.org/10.2307/2007825
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).