Spatial binary multiset topological relations

  • RAKHAL DAS Tripura University, Agartala
  • Binod Chandra Tripathy
  • Bindia Goswami Swami Vivekananda Institute of Science & Technology

Resumo

In this paper we introduced a concept of spatial binary multiset topological relation and binary space. We use the property of Binary space partition tree and spatial binary relation. We define spatial multiset topology. We study the different properties on it.

Downloads

Não há dados estatísticos.

Referências

R. Bilen, S. Zlatanova, P. Mathonet and F. Boniver, The Dimensional Model: A Framework to Distinguish Spatial Relationships. In Advances in Spatial Data Handling, 10th International Symposium on Spatial Data Handling, edited by D. Richardson and P. van Oosterom, Ottawa, July 8(12) (2002), 285–298.

W. Blizard,. Multiset theory. Notre Dame Jour. Formal Logic. 30 (1989), 36-66.

S.P. Chen and C.H. Zhou. Conformity Information Source. Earth Information Science 3 (2003) 1–3.

D.T. Csaba, Binary Space Partitions: Recent Developments” Combinatorial and Computational Geometry. MSRI Publications 52 (2005), 529-556.

M.T. David Topology Revisited: Representing Spatial Relations. International Journal of Geographical Information Science 15(8) (2001), 689–705

K.P. Girish and S.J. John, On mutiset topologies. Theory Appl. Math. Comp. Sci. 2 (2012), 37-52.

K.P. Girish and S.J. John, Relations and functions in multiset context. Inf. Sci., 179(6) (2009), 758-768.

K.P. Girish and S.J. John, Multiset topologies induced by multiset relations. Information Sciences, 188 (2012), 298–313.

A. Jakaria, Note on multiset topologies. Annals Fuzzy Math. Inform. 10(5) (2015), 825-827.

R. Mc Donnell and K. Kemp, International GIS Dictionary. New York: Wiley. (1995).

K. Shravan and B.C. Tripathy, Multiset ideal topological spaces and local functions. Proyecciones Journal of Mathematics. 37(4) (2018) 699-711.

K. Shravan and B.C. Tripathy, Multiset mixed topological space. Soft Comput., 23 (2019), 9801–9805.

X. Tang, W. Kainz and H. Wang, Topological Relations Between Fuzzy Regions in a Fuzzy Topological Space. International Journal of Applied Earth Observation and Geoinformation 12 (2010), 151–165.

B.C. Tripathy and G.C. Ray, On mixed fuzzy topological spaces and countability. Soft Computing, 16(10) (2012), 1691-1695.

B.C. Tripathy and G.C. Ray, Mixed fuzzy ideal topological spaces. Appl. Math. Comput., 220 (2013), 602-607.

B.C. Tripathy, R. Das, Multiset Mixed Topological Space Transactions of A. Razmadze Mathematical Institute, 177(1) (2023), 119–123.

R. Das, Generalized multiset and multiset ideal continuous function Applied Sciences, 2022, Vol 24, p98.

R. Das, Spatial fuzzy topological space Proyecciones (Antofagasta), 2022, vol 41(4), 999-1013.

Publicado
2025-05-29
Seção
Artigos