Variable exponent $p(\cdot)$-Kirchhoff type problem with convection in variable exponent Sobolev spaces

Résumé

We establish the existence of weak solution for a class of $p(x)$-Kirchhoff type problem for the $p(x)$-Laplacian-like operators with Dirichlet boundary condition and with gradient dependence (convection) in the reaction term. Our result is obtained using the topological degree for a class of demicontinuous operators of generalized $(S_{+})$ type and the theory of the variable exponent Sobolev spaces. Our results extend and generalize several corresponding results from the existing literature.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Biographie de l'auteur

Hasnae El Hammar, Sultan Moulay Slimane University

Laboratory LMACS, FST of Beni Mellal

Références

E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal. 164(3) (2002) 213-259. DOI: https://doi.org/10.1007/s00205-002-0208-7

E. Acerbi and G. Mingione, Gradient estimates for the p(x)-Laplacean system, J. Reine Angew. Math. 584 (2005) 117-148. DOI: https://doi.org/10.1515/crll.2005.2005.584.117

J. Berkovits, Extension of the Leray-Schauder degree for abstract Hammerstein type mappings, J. Differ. Equ. 234 (2007) 289-310. DOI: https://doi.org/10.1016/j.jde.2006.11.012

G. Dai and R. Hao, Existence of solutions for a p(x)-Kirchhoff-type equation, J. Math. Anal. Appl. 359 (2009) 275-284. DOI: https://doi.org/10.1016/j.jmaa.2009.05.031

X. L. Fan and D. Zhao, On the Spaces Lp(x) (Ω) and W m,p(x) (Ω), J. Math. Anal. Appl. 263 (2001) 424-446. DOI: https://doi.org/10.1006/jmaa.2000.7617

I. S. Kim and S. J. Hong, A topological degree for operators of generalized (S+) type, Fixed Point Theory and Appl. 1 (2015) 1-16. DOI: https://doi.org/10.1186/s13663-015-0445-8

G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.

O. Kovacik and J. Rakosnık, On spaces Lp(x) and W1,p(x) , Czechoslovak Math. J. 41(4) (1991) 592-618. DOI: https://doi.org/10.21136/CMJ.1991.102493

E. C. Lapa, V.P. Rivera and J.Q. Broncano, No-flux boundary problems involving p(x)-Laplacian-like operators, Electron. J. Diff. Equ. 2015(219) (2015) 1-10.

W. M. Ni and J. Serrin, Non-existence theorems for quasilinear partial differential equations, Rend. Circ. Mat. Palermo (2) Suppl. 8 (1985) 171-185.

W. M. Ni and J. Serrin, Existence and non-existence theorems for ground states for quasilinear partial differential equations, Att. Conveg. Lincei. 77 (1986) 231-257.

M. E. Ouaarabi, A. Abbassi and C. Allalou, Existence result for a Dirichlet problem governed by nonlinear degenerate elliptic equation in weighted Sobolev spaces, J. Elliptic Parabol Equ. 7(1) (2021) 221-242.

M. E. Ouaarabi, C. Allalou and A. Abbassi, On the Dirichlet problem for some nonlinear degenerated elliptic equations with weight, 2021 7th International Conference on Optimization and Applications (ICOA). (2021) 1-6. DOI: https://doi.org/10.1109/ICOA51614.2021.9442620

M. E. Ouaarabi, A. Abbassi and C. Allalou, Existence result for a general nonlinear degenerate elliptic problems with measure datum in weighted Sobolev spaces, International Journal On Optimization and Applications 1(2) (2021) 1-9. DOI: https://doi.org/10.1007/s41808-021-00102-3

M. E. Ouaarabi, A. Abbassi and C. Allalou, Existence and uniqueness of weak solution in weighted Sobolev spaces for a class of nonlinear degenerate elliptic problems with measure data, International Journal of Nonlinear Analysis and Applications, 13(1) (2021) 2635-2653.

V. D. Radulescu and D. D. Repoves, Partial Differential Equations with Variable Exponents, Variational Methods and Qualitative Analysis. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2015). DOI: https://doi.org/10.1201/b18601

M. A. Ragusa, A. Razani, and F. Safari, Existence of radial solutions for a p(x)-Laplacian Dirichlet problem, Adv. Differ. Equ. 2021(215) (2021). DOI: https://doi.org/10.1186/s13662-021-03369-x

M. A. Ragusa and A. Tachikawa, On continuity of minimizers for certain quadratic growth functionals, J. Math. Soc. Japan 57(3) (2005) 691-700. DOI: https://doi.org/10.2969/jmsj/1158241929

M. A. Ragusa and A. Tachikawa, Regularity of Minimizers of some Variational Integrals with Discontinuity, Z. Anal. Anwend 27(4) (2008) 469-482. DOI: https://doi.org/10.4171/ZAA/1366

K. R. Rajagopal and M. Ruzicka, Mathematical modeling of electrorheological materials, Contin. Mech. Thermodyn. 13(1) (2001) 59-78. DOI: https://doi.org/10.1007/s001610100034

M. M. Rodrigues, Multiplicity of solutions on a nonlinear eigenvalue problem for p(x)-Laplacian-like operators, Mediterr. J. Math. 9 (2012) 211-223. DOI: https://doi.org/10.1007/s00009-011-0115-y

Maria Alessandra Ragusa and Atsushi Tachikawa. Regularity for minimizers for functionals of double phase with variable exponents. Advances in Nonlinear Analysis, 9(1):710-728, 2020. DOI: https://doi.org/10.1515/anona-2020-0022

E. Zeidler, Nonlinear Functional Analysis and its Applications II/B, Springer-Verlag, New York, 1990. DOI: https://doi.org/10.1007/978-1-4612-0981-2

V. V. E. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Ross. Akad. Nauk Ser. Mat. 50(4) (1986) 675-710.

Publiée
2022-12-27
Rubrique
Research Articles