Renormalized solutions for some boundary valueelliptic problem withl1−data in generalized Sobolev spaces

  • RACHID BOUZYANI
  • Badr EL HAJI LABORATOIR LAMA, FEZ
  • Mostafa EL MOUMNI

Résumé

The aim of this paper is to investigate an existence of renormalized solutions forsome boundary value elliptic problem of the form −div(a(x, u,∇u) + Φ(x, u)) +g(x, u,∇u) =f in Ω,in the framework of Musielak-Orlicz spaces, where the term Φ satisfies the naturalgrowth condition, the functionghas a natural growth with respect to its third argument andwithout sign condition, no ∆2-condition is assumed on the Musielak function, and  f∈L1(Ω)

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Références

Y. Ahmida, A.Youssfi; Poincare-type inequalities in Musielak spaces. Ann. Acad. Sci. Fenn. Math. 44 (2019), no. 2, 1041–1054.

M. Ait Khellou, A. Benkirane and S.M. Douiri; Some properties of Musielak spaces with only the log-Holder continuity condition and application Annals of Functional Analysis,Tusi Mathematical Research Group (TMRG) 2020.DOI: 10.1007/s43034-020-00069-7.

L. Aharouch, J. Bennouna and A. Touzani; Existence of Renormalized Solution of Some Elliptic Problems in Orlicz Spaces. Rev. Mat. Complut. 22(1), (2009), 91–110.

M. Bendahmane and P. Wittbold; Renormalized solutions for nonlinear elliptic equations with variable exponents and L1 data. Nonlinear Anal. 70, (2009), 567–583.

A. Benkirane and J. Bennouna; Existence of renormalized solutions for some elliptic problems involving derivatives of nonlinear terms in Orlicz spaces. Partial differential equations, In Lecture Notes in Pure and Appl. Math., Dekker, New York, 229 (2002), 125–138.

A. Benkirane and M. Sidi El Vally; Some approximation properties in Musielak-Orlicz-Sobolev spaces. Thai. J. Math. 10, (2012), 371–381.

A. Benkirane and M. Sidi El Vally; Variational inequalities in Musielak-Orlicz-Sobolev spaces. Bull. Belg. Math. Soc. Simon Stevin 21, (2014), 787–811.

L. Boccardo, D. Giachetti, J.I. Diaz and F. Murat; Existence and regularity of renormalized solutions for some elliptic problems involving derivatives of nonlinear terms. J. Differential Equations 106 no. 2, (1993), 215–237.

A. Benkirane, B. El Haji and M. El Moumni, Strongly nonlinear elliptic problem with measure data in Musielak-Orlicz spaces. Complex Variables and Elliptic Equations,67 (6), 1447-1469. https://doi.org/10.1080/17476933.2021.1882434

A. Benkirane, B. El Haji and M. El Moumni, On the Existence Solutions for some Nonlinear Elliptic Problem. Bol. Soc. Paran. Mat. (3s.) v. 2022 (40) : 1–8. doi:10.5269/bspm.53111

A. Benkirane, N. El Amarty, B. El Haji and M. El Moumni, Existence of solutions for a class of nonlinear elliptic problems with measure data in the setting of Musielak–Orlicz–Sobolev spaces. J Elliptic Parabol Equ 9, 647–672 (2023). https://doi.org/10.1007/s41808-022-00193-6

A. Benkirane, B. El Haji and M. El Moumni, On the existence of solution for degenerate parabolic equations with singular terms, Pure and Applied Mathematics Quarterly Volume 14, Number 3-4, 591-606(2018).

R. J. DiPerna and P.-L . Lion; On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann.of Math. (2) 130 (1989), no. 2, 321–366.

B. El Haji, M. El Moumni, A. Talha; Entropy Solutions of Nonlinear Parabolic Equations in Musielak Framework Without Sign Condition and L1-Data Asian Journal of Mathematics and Applications 2021.

B. El Haji and M. El Moumni and A. Talha, Entropy solutions for nonlinear parabolic equations in Musielak Orlicz spaces without Delta2-conditions, Gulf Journal of Mathematics Vol 9, Issue 1 (2020) 1-26.

B. El Haji and M. El Moumni; Entropy solutions of nonlinear elliptic equations with L1-data and without strict monotonocity conditions in weighted Orlicz-Sobolev spaces, Journal of Nonlinear Functional Analysis, Vol. 2021 (2021), Article ID 8, pp. 1-17

B. El Haji, M. El Moumni, K. Kouhaila; On a nonlinear elliptic problems having large monotonocity with L1−data in weighted Orlicz-Sobolev spaces ,Moroccan J. of Pure and Appl. Anal. (MJPAA) Volume 5(1), 2019, Pages 104-116 DOI 10.2478/mjpaa-2019-0008

B. El Haji and M. El Moumni and K. Kouhaila; Existence of entropy solutions for nonlinear elliptic problem having large monotonicity in weighted Orlicz-Sobolev spaces , LE MATEMATICHE Vol. LXXVI (2021) - Issue I, pp. 37-61, https://doi.org/10.4418/2021.76.1.3.

N. El Amarty, B. El Haji and M. El Moumni. Entropy solutions for unilateral parabolic problems with L1-data in Musielak-Orlicz-Sobolev spaces Palestine Journal of Mathematics, Vol. 11(1)(2022) , 504-523.

B. El Haji, M. El Moumni, A. Talha; Entropy Solutions of Nonlinear Parabolic Equations in Musielak Framework Without Sign Condition and L1-Data Asian Journal of Mathematics and Applications 2021.

O. Azraibi, B.EL haji, M. Mekkour; Nonlinear parabolic problem with lower order terms in Musielak-Sobolev spaces without sign condition and with Measure data, Palestine Journal of Mathematics,Vol. 11(3)(2022) , 474-503.

O. Azraibi, B. EL haji, M. Mekkour; On Some Nonlinear Elliptic Problems with Large Monotonocity in Musielak–Orlicz–Sobolev Spaces, Journal of Mathematical Physics, Analysis, Geometry 2022, Vol. 18, No. 3, pp. 1–18.

O. Azraibi, B. EL Haji and M. Mekkour ; Strongly nonlinear unilateral anisotropic elliptic problem with -data, Asia Mathematika, Volume: 7 Issue: 1 , (2023) Pages: 1 – 20. DOI: doi.org/10.5281/zenodo.8071010.

O. Azraibi, B. El Haji, M. Mekkour; Entropy Solution for Nonlinear Elliptic Boundary Value Problem Having Large Monotonocity in Musielak-Orlicz-Sobolev Spaces, Asia Pac. J. Math., 10 (2023), 7. doi:10.28924/APJM/10-7.

N. El Amarty, B. El Haji and M. El Moumni, Existence of renomalized solution for nonlinear Elliptic boundary value problem without Δ2-condition SeMA 77, 389-414 (2020). https://doi.org/10.1007/s40324-020-00224-z.

G. Dal Maso, F. Murat, L. Orsina and A. Prignet; Renormalized solutions of elliptic equations with general measure data, A nn. Scuola Norm. Sup. Pisa Cl. Sci. 28(4) (1999), 741 − −808.

R. Elarabi, M. Rhoudaf and H. Sabiki; Entropy solution for a nonlinear elliptic problem with lower order term in Musielak-Orlicz spaces. Ric. Mat. (2017), https://doi.org/10.1007/s11587-017-0334.

J.P. Gossez and V. Mustonen; Variationnal inequalities in Orlicz-Sobolev spaces. Nonlinear Anal. 11(1987), 317-492.

J.-P. Gossez; Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coeficients. Trans. Amer. Math. Soc. 190 (1974), 163–205.

J. Musielak; Modular spaces and Orlicz spaces, Lecture Notes in Math. (1983), 10–34.

A. Porretta; Existence results for strongly nonlinear parabolic equations via strong convergence of truncations, Annali di matematica pura ed applicata. (IV), Vol. CL XXVII, (1999), 143–172.

J. M. Rakotoson; Uniqueness of renormalized solutions in a T-set for the L1-data problem and the link between various formulations. Indiana Univ. Math. J. 43(2), (1994), 685–702.

W. Rudin; Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1974. Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE), Number 21 , (2013)pp: 1–25.

A. Youssfi; Y.Ahmida; Some approximation results in Musielak-Orlicz spaces. Czechoslovak Math. J. 70 (145) (2020), no. 2, 453–471.

Publiée
2025-02-12
Rubrique
Research Articles