Applications of L_{gfs}-closed sets in mixed fuzzy soft ideal topological spaces

Résumé

The primary goal of this treatise is to introduce a new kind of generalized closed sets termed as Lgfs-closed sets in the light of fuzzy soft local function in a mixed fuzzy soft ideal topological space. We
also define the notion of fuzzy soft ∗-separated set. In addition, we procure the idea of fuzzy soft regularity,
normality and fuzzy soft compactness. We also study their behavior in terms of Lgfs-closed sets.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Bibliographies de l'auteur

Md Mirazul Hoque, NIT Agartala

Department of Mathematics

Jayasree Chakraborty, NIT Agartala

Department of Mathematics

Baby Bhattacharya, NIT Agartala

Department of Mathematics

Binod Chandra Tripathy, Tripura University

Department of Mathematics

Références

A. M. Abd El-Latif, Fuzzy Soft α-Connectedness in Fuzzy Soft Topological Spaces, Math. Sci. Lett. 5(1)(2016) 85-91.

G. Balasubramanian and P. Sundaram, On some generalizations of fuzzy continous functions, Fuzzy sets and Systems 86(1997) 93-100.

B. Bhattacharya and J. Chakraborty, Generalized regular fuzzy closed sets and their application, J. Fuzzy Math. Log Angles 23(1)(2015) 227-239.

B. Bhattacharya, Fuzzy independent topological spaces generated by fuzzy γ ∗-open sets and their application, Afr. Mat. 28(2017) 909-928.

M. J. Borah and B. Hazarika, Some results of mixed fuzzy soft topology and applications in Chemistry, Annals of Fuzzy Mathematics and Informatics 12(1)(2016) 129-138.

M. J. Borah and B. Hazarika, Soft ideal topological space and mixed fuzzy soft ideal topological space, Bol. Soc. Paran. Mat, 37(1)(2019) 141-151.

C. L. Chang, Fuzzy topological spaces, J. Math. Appl. 24 (1968) 182-193.

N. R. Das, P. C. Baishya, Mixed fuzzy topological spaces, J. Fuzzy Math. 3 (4) (1995) 777–784.

A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh and Sawsan S. S. El-Sayed, Fuzzy Soft Ideal topological spaces, South Asian Journal of Mathematics 6(4)(2016) 186-198.

A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh and Sawsan S. S. El-Sayed, Fuzzy Soft Ideal Theory: Fuzzy Soft Local Function and Generated Fuzzy Soft Topological Spaces, The Journal of Fuzzy Mathematics 25(2)(2017) 327-342.

K. Kuratowski, Topology, vol. I. New York, Academic Press (1966), transl.

N. Levine, Generalized closed sets in topology, Rend. Cir. Mat. Palermo 19(1970) 89-96.

R. Lowen, Fuzzy topological spaces and fuzzy compactness, J Math Anal Appl. 56(1976) 621-33.

J. Mahanta and P. K. Das, Results on fuzzy soft topological spaces, arXiv:1203.0634v1 (2012).

J. Mahanta and P. K. Das, Fuzzy soft topological spaces, J. Intell. Fuzzy Syst., 32(2017), 443–450

P. K. Maji, R. Biswas, and A.R. Roy, Fuzzy soft sets, J. Fuzzy Math. 9(3)(2001) 589-602.

S. Modak and T. Noiri, Connectedness of ideal topological spaces, Filomat, 29(4)(2015) 661-665.

D. Molodtsov, Soft set theory-First results, Computers Math. Appl. 37(4-5) (1999) 19-31.

J. H. Park and J. K. Park, On regular generalized fuzzy closed sets and generalizations of fuzzy continuous functions, Indian J. Pure Appl. Math. 34(2003) 1013-1024.

A. Paul, B. Bhattacharya and J. Chakraborty, On γ-Hyperconnectedness and fuzzy mappings in fuzzy bitopological spaces, Journal of Intelligent and Fuzzy Systems 32(3)(2017) 1815-1820.

B. Pazar Varol and H. Aygun, Fuzzy soft topology, Hacettepe Journal of Mathematics and Statistics 5 (1)(2013) 87-96.

S. Roy and T. K. Samanta, A note on fuzzy soft topological spaces, Ann. Fuzzy Math. Inform. 3 (2012) 305–311.

D. Sarkar, Fuzzy ideal theory fuzzy local function and generated fuzzy topology. Fuzzy Sets Syst., 1997(87) 117–23

M. Shabir and M. Naz, On Soft Topological Spaces, Computers and Mathematics with Applications, 61 (2011) 1786- 1799.

T. Simsekler and S. Yuksel, Fuzzy soft topological spaces, Ann. Fuzzy Math. Inf. 5(1)(2013) 87–96.

B. Tanay and M. B. Kandemir, Topological structures of fuzzy soft sets, Computers and Mathematics with Applications, 61 (2011)412-418.

B. C. Tripathy and G. C. Ray, On mixed fuzzy topological spaces and countability, Soft. Comput. 16(10)(2012) 1691–1695.

R. Vaidyanathaswamy, Set topology. New York, Chelsa (1960).

L. A. Zadeh, Fuzzy sets, Inform. Control. 8(1965) 338-353.

Publiée
2024-05-03
Rubrique
Articles