Calderon’s reproducing formula for Bessel wavelet transform

  • C. P. Pandey North Eastern Regional Institute of Science and Technology
  • Pranami Phukan North Eastern Regional Institute of Science and Technology

Résumé

In this paper the inverse Bessel Wavelet Transform is investigated, the Calderon reproducing formula of Bessel wavelet transform is obtained by generalizing result of [7]. Some applications associated with Calderon’s reproducing formula of Hankel convolution are given.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Références

A. Erdelyi, Higher Transcendental functions vol. I, Mc-Graw-Hill, New York, (1953).

A. Erdelyi, Tables of Integral Transforms vol. I, Mc-Graw-Hill, New York, (1954).

E. C. Titchmarch, Introduction to the Theory of Fourier integrals, 2nd edition, Oxford University Press, Oxford, U. K. (1948).

E. Lieb and M. Loss, Analysis, 2nd edition, American Mathematical Society Providence Rhode Island (2001).

J. J. Batancor and B. J. Gonzalez, A convolution operation for a distributional Hankl transformation. Stdia Mathematica 117(1), 57-72, (1985).

L. Debnath, Integral transforms and their applications, CRC Press, New York, (1995).

M. Frazier, B. Jawerth and G. Wiess, Littlewood-Paley theory and study of function spaces. CBMS Regional Conference series in Mathematics, American Mathematical Society, Rhode Island 79, (1991).

R. S. Pathak, The G-function as unsymmetrical Fourier Kernels II, Proc. Amer. Math. Soc. 14, 18-28, (1963).

R. S. Pathak and G. Pandey, Calderon’s reproducing formula for Hankl convolution. International Journal of Mathematics and Mathematical Science 2006, 1-7, (2006).

R. S. Pathak and M. M. Dixit, Continuous and discrete Bessel wavelet transform. Journal of Computational and Applied Mathematics 160, 241-250, (2003).

S. K. Upadhyay and Alok Tripathi, Calderon’s reproducing formula for Watson wavelet transform. Indian J. Pure Appl. Math. 46, 269-277, (201

Publiée
2024-05-02
Rubrique
Articles