On symmetric generalized bi-semiderivations of prime rings

  • Faiza Shujat Taibah University Madinah

Résumé

In the present note we anaugrate the idea of symmetric generalized bi-semiderivation on rings and prove some classical commutativity results for generalized bi-semiderivation. Moreover, our main objective is to extend the main theorem in \cite{VJ} for biderivation to the case of symmetric generalized bi-semiderivation on prime ring.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Biographie de l'auteur

Faiza Shujat, Taibah University Madinah

Department of Mathematics

Références

F. Shujat, Symmetric generalized biderivations of prime rings, Bol. Soc. Paran. Mat. 39(4)(2021), 65-72 (preprint).

G. Maksa, A remark on symmetric biadditive functions having nonnegative diagonalization, Glasnik. Mat. 15 (35) (1980), 279-282.

I. N. Herstein, A note on derivations II, Canad. Math. Bull. 22 (1979), 509-511.

J. Bergen, Derivations in Prime Rings, Canad. Math. Bull. 26 (1983), 267-270.

J. C. Chang, On semiderivations of prime rings, Chinese J. Math., 12, (1984), 255-262.

J. Vukman, Two results concerning symmetric biderivations on prime rings, Aequationes Math. 40 (1990), 181–189.

H. Yazrali and D. Yilmaz, On symmetric bi-semiderivation on prime rings Preprint (2020).

N. Rehman and A. Z. Ansari, On lie ideals with symmetric bi-additive maps in rings, Palestine J. Math. 2 (2013), 14-21.

Publiée
2024-05-03
Rubrique
Research Articles