On symmetric generalized bi-semiderivations of prime rings
Résumé
In the present note we anaugrate the idea of symmetric generalized bi-semiderivation on rings and prove some classical commutativity results for generalized bi-semiderivation. Moreover, our main objective is to extend the main theorem in \cite{VJ} for biderivation to the case of symmetric generalized bi-semiderivation on prime ring.
Téléchargements
Références
F. Shujat, Symmetric generalized biderivations of prime rings, Bol. Soc. Paran. Mat. 39(4)(2021), 65-72 (preprint).
G. Maksa, A remark on symmetric biadditive functions having nonnegative diagonalization, Glasnik. Mat. 15 (35) (1980), 279-282.
I. N. Herstein, A note on derivations II, Canad. Math. Bull. 22 (1979), 509-511.
J. Bergen, Derivations in Prime Rings, Canad. Math. Bull. 26 (1983), 267-270.
J. C. Chang, On semiderivations of prime rings, Chinese J. Math., 12, (1984), 255-262.
J. Vukman, Two results concerning symmetric biderivations on prime rings, Aequationes Math. 40 (1990), 181–189.
H. Yazrali and D. Yilmaz, On symmetric bi-semiderivation on prime rings Preprint (2020).
N. Rehman and A. Z. Ansari, On lie ideals with symmetric bi-additive maps in rings, Palestine J. Math. 2 (2013), 14-21.
Copyright (c) 2024 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



