On Cartesian product of matrices

  • Prof. Deepak Sarma

Résumé

Recently, Bapat and Kurata [\textit{Linear Algebra Appl.}, 562(2019), 135-153] defined the Cartesian product of two square matrices $A$ and $B$ as $A\oslash B=A\otimes \J+\J\otimes B$, where $\J$ is the all one matrix of appropriate order and $\otimes$ is the Kronecker product. In this article, we find the expression for the trace of the Cartesian product of any finite number of square matrices in terms of traces of the individual matrices. Also, we establish some identities involving the Cartesian product of matrices.
Finally, we apply the Cartesian product to study some graph-theoretic properties.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.
Publiée
2025-07-29
Rubrique
Research Articles