On the stabilization of some degenerate vibrating equation by fractional damping
Résumé
We study the stabilization of the degenerate wave equation $u_{tt}−(\sqrt{1−x^2})u_x)_x =0$ with $x ∈ (−1,1)$, by a fractional boundary damping acting at $x = 1$. Thus, using semigroup theory and method inspired from Rozendaal, stahn and Seifertr. We prove the logarithm decays of its total energy with (lnt)^{−2} decay rate where $0<\alpha< 1$.
Téléchargements
Les données sur le téléchargement ne sont pas encore disponible.
Publiée
2025-01-28
Numéro
Rubrique
Research Articles
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



