Higher-order system of p-nonlinear difference equations solvable in closed-form with variable coefficients

Résumé

In this paper, we investigate the solutions of the following system of p-nonlinear difference equations

x_{n+1}^{(i)}=((a_{n}x_{n-m}^{(i+1)mod(p)})/(b_{n}+c_{n}x_{n-m}^{(i+1)mod(p)})),n,m∈N₀,p∈N,i∈{1,...,p},

where N₀=N∪{0}, the sequences (a_{n}), (b_{n}),(c_{n}), are non-zero real numbers and initial values x_{-j}^{(i)}, j∈{0,...,m}, i∈{1,...,p}, do not equal -b_{n}c_{n}⁻¹, for all n∈ N₀. Also, we investigate the behavior of positive solutions of the above-mentioned system when variable coefficients. Finally, we give some numerical examples which verify our theoretical result.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Références

E. M., Elsayed. (2012). Solutions of rational difference system of order two. Mathematical and Computer Modelling, 55(3-4), 378-384.

E. M., Elsayed. (2014). Solution for systems of difference equations of rational form of order two. Computational and Applied Mathematics, 33(3), 751-765.

E. M., Elsayed., H. S. Gafel. (2021). On some systems of three nonlinear difference equations. Journal of Computational Analysis and Applications, 29(1), 86-108.

M. Kara., Y. Yazlik. (2019). Solvability of a system of nonlinear difference equations of higher order. Turkish Journal of Mathematics, 43(3), 1533-1565.

A. S. Kurbanlı., C., Çinar and İ., Yalçinkaya. (2011a). On the behavior of positive solutions of the system of rational difference equations x_{n+1}=x_{n-1}/(y_{n}x_{n-1}+1),y_{n+1}=y_{n-1}/(x_{n}y_{n-1}+1). Mathematical and Computer Modelling, 53(5-6), 1261-1267.

Publiée
2022-12-22
Rubrique
Articles