Automorphisms of projective manifolds

Résumé

Let $(M,P\nabla_M)$ be a compact projective manifold and $Aut(M,P\nabla_M)$ its group of automorphisms. The purpose of this paper is to study the topological properties of $(M,P\nabla_M)$ if $Aut(M,P\nabla_M))$
is not discrete by applying the results of [13] and the Benzekri's functor which associates to a projective manifold a radiant affine manifold. This enables us to show that the orbits of the connected component of $Aut(M,P\nabla_M)$ are immersed
projective submanifolds. We also classify $3$-dimensional compact projective manifolds such that $dim(Aut(M,P\nabla_M))\geq 2$.

 

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Références

Albert A. Structure of algebras. Vol. 24. American Math. Soc. 1939.

Aschenbrenner, M. Friedl, S. Wilton, H. 3 manifold groups. https://arxiv.org/pdf/1205.0202.pdf

Benoist, Y. Nilvarietes projectives. Commentarii Mathematici Helvetici, 1994, vol. 69, no 1, p. 447-473.

Benzecri J.P. Sur les varietes localement affines et localement projectives. Bulletin de la S.M.F. 88 (1960) 229-332.

Bredon, G. Bredon, Glen E. Topology and geometry. Vol. 139. Graduate texts in Math.

Chatelet, Gilles, Rosenberg, Harold, et Weil, Daniel. A classification of the topological types of R2-actions on closed orientable 3-manifolds. Publications Mathematiques de l’IHES, 1974, vol. 43, p. 261-272

Conlon, Lawrence. Transversally parallelizable foliations of codimension two. Transactions of the American Mathematical Society, 1974, vol. 194, p. 79-102.

Cooper, D. Goldman, W. A 3–Manifold with no Real Projective Structure. In Annales de la Faculte des sciences de Toulouse: Mathematiques, vol. 24, no. 5, pp. 1219-1238. 2015

Goldman, W. Convex real projective structures on compact surfaces. J. Differential Geometry 31 (1990) 791-845.

Montgomery D. Samelson H. Transformation groups of spheres. Annals of Mathematics 44 (1943) 454-470.

Montgomery, D. Zippin, L. Topological transformation groups. Interscience Tracts in pure and applied mathematics 1955.

Sullivan, D; Thurston„ W. Manifolds with canonical coordinate charts: some examples. Enseign. Math 29 (1983): 15-25.

Tsemo, A. Dynamique des varietes affines. Journal of the London Mathematical Society 63 (2001) 469-486.

Tsemo, A. Decomposition des varietes affines. Bulletin des sciences math´ematiques 125 (2001) 71-83.

A Tsemo, A. Linear foliations on affine manifolds. Topology and its Applications. (300) 107756.

Publiée
2024-04-19
Rubrique
Articles