A generalization of the regular function modulo n
Abstract
A new generalization for von Neumann regular elements modulo n (regular elements modulo n) will be defined and studied. Also, we survey the general properties of the multiplicative function V (n, m) which counts the number of n-regular elements in the ring Z_m
Downloads
References
Anderson, D. F. and Badawi A., On (m, n)-closed ideals of commutative rings, Journal of Algebra and Its Applications, 16(1), 1750013, (2017).
Alkam O., and Osba E.A., On the regular elements in Zn, Turkish Journal of Mathematics, 32(1), 31-39, (2008).
Osba E.A., Henriksen M. and Alkam O., Combining local and von Neumann regular rings, Communications in Algebra, 32, 2639-2653, (2004).
Tóth L., Regular integers modulo n, Annales Univ. Sci. Budapest., Sect. Comp., 29, 263-275, (2008).
Anderson D.F. and Badawi A., Von Neumann Regular and Related Elements in Commutative Rings, Algebra colloquium 19(spec01), 1017-1040, (2012).
Anderson D.F., Badawi A. and Fahid B., Weakly (m, n)-closed ideals and (m, n)-von Neumann regular rings, Journal of the Korean Mathematical Society, 55(5), 1031-1043, (2018).
Copyright (c) 2024 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).