Some characterization of $L^r-$ Henstock-Kurzweil integrable functions

  • Hemanta Kalita VIT Bhopal University

Résumé

In this article, we discuss few properties of $L^r$-Henstock-Kurzweil (in short $L^r$-HK) integrable functions, introduced by Paul Musial in \cite{MS}. We re-defined $L^r$-bounded variations. We have proved that $L^r$-Henstock-Kurzweil integrable functions are Denjoy integrable.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Biographie de l'auteur

Hemanta Kalita, VIT Bhopal University

Mathematics Division

Références

R. G. Bartle, A Modern Theory of Integration, AMS, 2001.

A. P. Calderón and A. Zygmund, Local properties of Solutions of elliptic partial differential equations, Studia. Mathematica, 20, (1961), 171-225.

J. L. Gámez and J. Mendoza, On Denjoy-Dunford and Denjoy-Pettis integrals, Studia Math., 2, (1998), 115-133.

R. A. Gordon, The Denjoy extension of the Bochner, Pettis, and Dunford integrals, Studia Math., 1, (1989), 73-91.

Russell A. Gordon,The Integrals of Lebesgue, Denjoy, Perron, and Henstock, AMS (1991).

L. Gordon, Perron integral for derivatives in Lr, ibid. 28 (1967), 295-316.

G. Q. Liu, On necessary conditions for Henstock integrability, Real Anal. Exchange, 18(2), (1992/93), 522-531.

Paul M. Musial and Yoram Sagher, The Lr Henstock-Kurzweil integral, Studia Mathematica 160(1), (2004) 53-81.

Paul Musial, The Lr-Variational integral,Real Analysis Exchange , Summer Symposium 2010, pp. 96-97

P. Musial, F. Tulone, Dual of the Class of HKr Integrable Functions, Minimax Theory and its Applications Volume 4(1), (2019), 151-160.

O. Perron, Ueber den Integralbegriff, S.B. Heidelberg., Akad. Wiss, 16, (1914).

de la Vallée Poussin, Intégrales de Lebesgue, Functions d’ensemble. Classes de Baire, Paris, 1916.

Saks, S.,Theory of Integral, 2nd revised ed., Hafner, New York, (1937).

Tikare, A. S., Manohar S. Chaudhary, S. M., The Henstock-Stieltjes integral in Lr, Journal of Advanced Research in Pure Mathematics, 1, 59-80, (2012).

Lions, J. L., Exact Controllability, Stabilizability, and Perturbations for Distributed Systems, Siam Rev. 30, 1-68, (1988).

C. M. Dafermos, C. M., An abstract Volterra equation with application to linear viscoelasticity. J. Differential Equations 7, 554-589, (1970).

Publiée
2024-05-21
Rubrique
Articles