$h$-admissible Fourier integral operators with complex phase function
Résumé
e study in this work a particular class of $h$-admissible Fourier integral operators with complex phase function. These operators are bounded on Schwartz space $\mathcal{S}(\mathbb{R}^n)$ and on its dual $\mathcal{S}'(\mathbb{R}^n)$.
Téléchargements
Références
Aid, O. F., Senoussaoui, A., The boundedness of h-admissible Fourier integral operators on Bessel potential spaces. Turk. J. Math., vol. 43, no. 5, pp. 2125 { 2141, 2019.
Aitemrar, C. A., Senoussaoui, A., h-Admissible Fourier integral operators. Turk. J. Math., vol 40, 553-568, 2016.
Aitemrar, C. A., Senoussaoui, A., h-Fourier Integral Operators with Complex Phase. Mathematical Sciences and Apllications E-Notes, 6 (1), 77-84, (2018).
Asada, K., Fujiwara,D., On some oscillatory transformations in L2 (Rn). Japanese J. Math., vol 4 (2), 299-361, 1978.
Duistermaat, J.J., Fourier integral operators. Courant Institute Lecture Notes, New-York 1973.
Egorov, Yu.V., Microlocal analysis. In Partial Differential Equations IV. Springer-Verlag Berlin Heidelberg, 1-147, 1993.
Eskin, Gregory I., Degenerate elliptic pseudodifferential equations of principal type. Mat. Sb. (N.S.), vol 82, 585-628, 1970.
Harrat, C., Senoussaoui, A., On a class of h -Fourier integral operators. Demonstratio Mathematica, Vol. XLVII, No 3, 596-607, 2014.
Hasanov, M., A class of unbounded Fourier integral operators. J. Math. Anal. Appl., 225, 641-651, 1998.
Helffer, B. Theorie spectrale pour des operateurs globalement elliptiques. Societe Mathematiques de France, Asterisque 112, 1984.
Hormander, L., Fourier integral operators I. Acta Math. vol 127, 79-183, 1971.
Hormander, L., Pseudo-differential Operators and Hypo-elliptic equations Proc. Symposium on Singular Integrals. Amer. Math. Soc. 10, 138183, 1967.
Messirdi, B., Senoussaoui, A., On the L2 boundedness and L2 compactness of a class of Fourier integral operators. Elec J. Diff. Equ., vol 2006, no.26, 1-12, 2006.
Messirdi, B., Senoussaoui, A., Parametrix du probleme de Cauchy C1 muni d'un systeme d'ordres de Leray-Volevic. J. for Anal and its Appl., Vol 24, (3), 581{592, 2005.
Robert, D., Autour de l'approximation semi-classique. Birkauser, 1987.
Senoussaoui, A., Operateurs h-admissibles matriciels a symbole operateur. African Diaspora J. Math. vol 4, (1), 7-26, 2007.
Copyright (c) 2024 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).