Associated timelike helices in Minkowski 3-space
Résumé
In this study, some new types of timelike general helices associated to a non-lightlike curve are introduced in Minkowski 3-space. These new helices are called associated timelike helices. Some special types of associated timelike helices are introduced and also by considering the conditions that reference curve is a non-lightlike helix or a spacelike slant helix, the position vectors of these new timelike helices are determinate.
Téléchargements
Références
A.T. Ali, R. Lopez, Slant helices in Minkowski space E3 1 , J. Korean Math. Soc. 48 (2011), 159-167.
A.T. Ali, Position vectors of spacelike helices from intrinsic equations in Minkowski 3-space, Nonlinear Anal Theory Methods Appl. 73 (2010), 1118-1126.
A.T. Ali, Position vectors of general helices in Euclidean 3-space, Bull. of Math. Analysis and Appl. 3(2) (2011), 198-205.
A.T. Ali, Position vectors of slant helices in Euclidean space E3, J. Egyptian Math. Soc. 20 (2012), 1-6.
A.T. Ali, M. Turgut, Position vectors of timelike general helices in Minkowski 3-space, Global J. Adv. Res. Class. Mod. Geom. 2(1) (2013), 1-10.
A.T. Ali, S.R. Mahmoud, Position vector of spacelike slant helices in Minkowski 3-space, Honam Mathematical J. 36(2) (2014), 233-251.
A.T. Ali, Non-lightlike constant angle ruled surfaces in Minkowski 3-space, Journal of Geometry and Physics. 157 (2020), 103833.
M. Barros, A. Ferrandez, P. Lucas, M.A. Merono, General helices in the three dimensional Lorentzian space forms, Rocky Mountain J. Math. 31 (2001), 373-388.
J.H. Choi, Y.H. Kim, A.T. Ali, Some associated curves of Frenet non-lightlike curves in E3 1 , J Math. Anal Appl., 394 (2012), 712-723.
N. Chouaieb, A. Goriely, J.H. Maddocks, Helices, Proc. Natl. Acad. Sci. USA, 103 (2006), 9398-9403.
T.A. Cook, The Curves of Life, Constable, London, 1914, Reprinted, Dover, London, 1979.
H. Erdem, A. Ucum, K. Ilarslan, C. Camcı, New Approach to Timelike Bertrand Curves in 3-Dimensional Minkowski Space, Carpathian Math. Publ. 15 (2023), 482-494.
M.S. El Naschie, Einstein’s dream and fractal geometry, Chaos Solitons Fractals, 24 (2005), 1-5.
A. Ferrandez, A. Gimenez, P. Lucas, Null helices in Lorentzian space forms, Internat. J. Modern Phys. A, 16 (2001), 4845-4863.
S. Izumiya, N. Takeuchi, New special curves and developable surfaces, Turk J. Math., 28 (2004), 153-163.
A. Jain, G. Wang, K.M. Vasquez, DNA triple helices: biological consequences and therapeutic potential, Biochemie, 90 (2008), 1117-1130.
F. Klein, Ueber die sogenannte Nicht-Euklidische Geometrie, Math. Ann. 6 (1873), 112–145. https://doi.org/10.1007/BF01443189Biochemie,
B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, London, 1983.
M. Ozdemir, A.C. Coken, Backlund transformation for non-lightlike curves in Minkowski 3-space, Chaos Solitons Fractals, 42 (2009), 2540-2545.
J.G. Ratclifte, Foundations of Hyperbolic manifolds, Springer-Verlag, New York, 1994.
M. Sakaki, Notes on null curves in Minkowski spaces, Turk J. Math., 34 (2010), 417-424.
J. Walrave, Curves and surfaces in Minkowski space, Ph.D. Thesis, K.U. Leuven, Faculty of Science, Leuven, 1995.
J.D. Watson, F.H. Crick, Molecular structures of nucleic acids, Nature, 171 (1953), 737-738.
X. Yang, High accuracy approximation of helices by quintic curve, Comput. Aided Geom. Design, 20 (2003), 303-317.
E. Zıplar, A. Senol, Y. Yaylı, On Darboux helices in Euclidean 3-space, Global Journal of Science Frontier Research Mathematics and Decision Sciences, 12(3) (2012), 73-80.
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



