Derivation alternator rings with S(a, b, c)=0
Résumé
In this paper, we discuss the derivation alternator rings which are nonassociative but not (-1.1) rings. By assuming some additional conditions, we prove that derivation alternator rings are (-1,1) rings. Here we validate a semiprime derivation alternator ring with commutators in the left nucleus satisfies the identity . By using this we show that a semiprime derivation alternator ring with commutators in the left nucleus is a (-1,1) ring.
Téléchargements
Références
Hentzel, I. R., Kleinfeld, E. and Smith, H. F. “On rings in the join of associative and commutative”, J. Algebra, Vol. 149, No. 2 (1992), 528-537.
Hentzel, I. R. “The characterization of (-1,1) rings” J. Algebra 30(1974),236-258.
Hentzel. I. R., Hogben, L. and Smith H. F. “Flexible derivation alternator rings”, Com. in. algebra, 8 (20) (1980), 1997-2014.
Kleinfeld, E. “Rings with (x,y,x) and commutators in the left nucleus”, Comm. in. Algebra, 16 (10), (1988), 2023-2029.
Kleinfeld, E. “Generalization of alternative rings I”, J. Algebra, 18 (1971), 304-325.
Thedy, A. “On rings with commutators in the nucleus”, Math. Z. 119 (1971), 213-218.
Copyright (c) 2024 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).