Prime Weakly Standard Rings 1.
Resumo
In this paper, we prove that a prime weakly standard ring is either a (-1,1) ring or a commutative ring. In general, weakly standard rings are nonassociative rings which are not (-1, 1) rings, but by applying some additional conditions we prove that these are (-1,1) rings.
Downloads
Não há dados estatísticos.
Referências
1)Hentzel, I.R. “The characterization of (-1,1) rings’’J. Algebra 30(1974),236-258.
2)Kleinfeld, E. “Standard and accessible rings’’ Canad.J.Math.8(1956),335-340.
3)Sansoucie, R.L. “Weakly Standard Rings”,Amer.J.Math,79(1957), 80-86.
4)Thedy, A “On Rings Satisfying ((𝑎,𝑏,𝑐),𝑑)=0 ”,Proc.Amer.Soc.29(1971), 213-218.
5)Schafer, R.D. ““An introduction to nonassociative algebras”, Pure and Appl. Math., Vol. 22, Academic press, New York, (1966).
6)Thedy, A. “On rings with commutators in the nucleus”, Math. Z. 119 (1971), 213-218.
2)Kleinfeld, E. “Standard and accessible rings’’ Canad.J.Math.8(1956),335-340.
3)Sansoucie, R.L. “Weakly Standard Rings”,Amer.J.Math,79(1957), 80-86.
4)Thedy, A “On Rings Satisfying ((𝑎,𝑏,𝑐),𝑑)=0 ”,Proc.Amer.Soc.29(1971), 213-218.
5)Schafer, R.D. ““An introduction to nonassociative algebras”, Pure and Appl. Math., Vol. 22, Academic press, New York, (1966).
6)Thedy, A. “On rings with commutators in the nucleus”, Math. Z. 119 (1971), 213-218.
Publicado
2025-08-10
Edição
Seção
Artigos
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



