Robin problem involving the $p(x)$-Laplacian operator without Ambrosetti-Rabinowizt condition

Resumen

The paper deals with the following Robin problem
$$
\left\lbrace
\begin{aligned}
- \mathcal{M} \left( \int _{\Omega} \frac{1}{p(x)} \vert \nabla u \vert ^{p(x)} dx + \int _{\partial \Omega } \frac{a(x)}{p(x)} \vert \nabla u \vert ^{p(x)} d \sigma \right) \mathop{\rm div} (\vert \nabla u \vert ^{p(x)-2} \nabla u) &= \lambda h(x,u) \ \ \text{ in } \Omega,\\
\vert \nabla u \vert ^{p(x)-2} \frac{\partial u}{\partial \nu} + a(x) \vert u \vert ^{p(x)-2} u &=0 \quad \quad \quad \ \text{ on } \partial \Omega .
\end{aligned}
\right.
$$
The goal is to determine the precise positive interval of $\lambda $ for which the problem admits at least two nontrivial solutions via variational approach for the above problem without assuming the Ambrosetti-Rabinowitz condition. Next, we give a result on the existence of an unbounded sequence of nontrivial weak solutions by employing the fountain theoreom with Cerami condition.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Mahmoud El Ahmadi, University Mohammed I

Department of Mathematics

Abdesslem Ayoujil, Regional Centre of Trades Education and Training

Department of Mathematics

Mohammed Berrajaa, University Mohammed I

Department of Mathematics

Citas

G. A. Afrouzi, N. T. Chung and Z. Naghizadeh, Multiple solutions for p(x)-Kirchhoff type problems with Robin boundary conditions, Electronic Journal of Differential Equations, 2022(24), 1-16, (2022).

M. Allaoui, Existence results for a class of p(x)-Kirchhoff problems, Studia Scientiarum Mathematicarum Hungarica, 54(3), 316-331, (2017).

M. Allaoui, A. R. El Amrouss, F. Kissi and A. Ourraoui, Existence and multiplicity of solutions for a Robin problem, J. Math. Computer Sci, 10, 163-172, (2014).

A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, Journal of functional Analysis, 14, 349-381, (1973).

A. Ayoujil and A. Ourraoui, On a Robin type problem involving p(x)-Laplacian operator, Georgian Mathematical Journal, 29, 13-23, (2022).

G. Cerami, An existence criterion for the critical points on unbounded manifolds, Istit. Lombardo Accad. Sci. Lett. Rend. A, 112, 332-336, (1978).

S. G. Deng, Positive solutions for Robin problem involving the p(x)-Laplacian, Journal of mathematical analysis and applications, 360, 548-560, (2009).

X. L. Fan, Solutions for p(x)-Laplacian Dirichlet problems with singular coefficients, J. Mathh. Anal. Appl., 300, 30-42, (2004).

X. Fan and X. Han, Existence and multiplicity of solutions for p(x)-Laplacian equations in RN, Nonlinear Analysis: Theory, Methods & Applications, 59, 173-188, (2004).

X. Fan, J. Shen and D. Zhao, Sobolev embedding theorems for spaces Wk,p(x)(Ω), Journal of Mathematical Analysis and Applications, 262, 749-760, (2001).

X. Fan and D. Zhao,On the Spaces Lp(x)(Ω) and Wm,p(x)(Ω), Journal of mathematical analysis and applications, 263, 424-446, (2001).

B. Ge and Q. M. Zhou, Multiple solutions for a Robin-type differential inclusion problem involving the p(x)-Laplacian, Mathematical Methods in the Applied Sciences, 40, 6229-6238, (2017).

O. Kováčik and J. Rákosník, On spaces Lp(x) and Wk,p(x), Czechoslovak mathematical journal, 41, 592-618, (1991).

J. Lee and Y. H. Kim, Multiplicity results for nonlinear Neumann boundary value problems involving p-Laplace type operators, Boundary Value Problems, 2016, 1-25, (2016).

M. El Ahmadi, M. Berrajaa and A. Ayoujil, Existence of two solutions for Kirchhoff-double phase problems with a small perturbation without (AR)-condition, Discrete and Continuous Dynamical Systems - Series S, (2023). https://doi.org/10.3934/dcdss.2023085

K. R. Rajagopal and M. Růzıčka, On the modeling of electrorheological materials, 23, 401-407, (1996).

M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Springer Berlin, Heidelberg, (2000).

W. Xie and H. Chen, Existence and multiplicity of solutions for p(x)-Laplacian equations in RN, Mathematische Nachrichten, 291, 2476-2488, (2018).

J. F. Zhao, Structure theory of Banach spaces, Wuhan University Press, Wuhan (in Chinese), (1991).

W. Zou, Variant fountain theorems and their applications, Manuscripta Mathematica, 104, 343-358, (2001).

Publicado
2024-06-03
Sección
Articles