Limit study of an input stability problem on nanolayer
Résumé
This paper aims to discuss a stabilization problem for semilinear systems and to study the asymptotic behavior of a distributed system on an evolution domain,in a containing structure, of a nanolayer. The epi-convergence method is considered to find the limit problem with interface conditions;
this approach studies the stability of the approximate problem associated with our initial problem. After that, we study the limit behavior.
The received results are tested numerically.
Téléchargements
Références
Zerrik, E. Ouzahra M. Regional stabilization for infinite-dimensional systems, Int. J. Control, 2003, vol 76, number 1, pp. 73-81.
Amourous, M., El Jai, A., and Zerrik, E., 1994, Regional observability of distributed systems. International Journal of Systems Sciences, 25, 301-313.
El Jai, A., Simon, M. C., Zerrik, E., and Pritchard, A. J., 1995, Regional controllability of distributed parameter systems. International Journal of Control, 62, 1351-1365.
Triggiani, R., 1975, On the stabilizability problem in Banach space. Journal of Mathematical Analysis and Applications, 52, 383-403.
Balakrishnan, A. V., 1981, Strong stability and the steady state Riccati equation. Applied Mathematics and Optimization, 7, 335-345.
J.M. Ball, M. Slemrod, Feedback stabilization of distributed semilinear control systems, App. Math. Optim. 5 (1979) 169-179.
A. Bounabat, A. Bouslouss, H. Hammouri, Stabilisation faible d’un systeme bilineaire dissipatif en dimension infinie, Extracta Mathematicae 7 (2) (1993) 95-98.
A. Bounabat, J.P. Gauthier, Weak stabilizability of infinite dimensional nonlinear systems, Appl. Math. Lett. 4 (1) (1991) 95-98.
H. Bounit, H. Hammouri: Feedback stabilization for a class of distributed semilinear control systems, Nonlinear Analysis. 37 (1999), 953-969.
K. J. ENGEL et R. NAGEL - One parameter semigroups for linear evolution equations, Graduate Texts in Mathematics 194, Springer-Verlag New York, 2000.
Brezis H., Analyse fonctionnelle, Theorie et Applications, Masson (1992).
Hecht F., Pironneau O., Le Hyaric A., Ohtsuka K., FreeFem++ Manual, downloadable at http://www.Freefem.org.
J.L. Lions, Quelques methodes de resolution des problemes aux limites non lineaires. Dunod, Gautier Villars Paris 1969.
A. Ait Moussa and J. Messaho, Limit behavior of an oscillating thin layer, in Electronic Journal of Differential Equations, Conference, vol. 14, pp. 21-33, Oujda International Conference on Nonlinear Analysis, Oujda, Morocco, 2006.
Attouch H., Variational Convergence for Functions and Operators, Pitman (London) 1984.
S. I. SOBOLEV, Applications de l’analyse fonctionnelle aux equations de la physique mathematique. Leningrad, 1950 .
S. Axler and K.A. - A Short Course on Operator Semigroups, (C) 2006 Springer Science+Business Media, LLC.
C.M. Dafermos, M. Slemrod, Asymptotic behavior of nonlinear contractions semigroups, J. Funct. Analy. 13 (1973) 97 - 106.
A. PAZY - Semigroups of linear operators and applications to partial differential equations, 1ere ed., Applied Mathematical Sciences 44, Springer-Verlag New York, 1983.
Zerrik E. Ouzahra M. and Ztot K. Regional stabilization for infinite bilinear systems, IEE Cont. Theory. Appl. 2004, volume: 151, issue : 1, pp. 109-116.
Zerrik, E. Ouzahra M. An output stabilization problem for infinite-dimensional systems, Systems and Control Letters, 2004, propose.
Zerrik, E. and Ouzahra, M. Output stabilization for distributed semilinear systems. IET. Control theory and applications. 2007, vol 1, Issue 3, pp. 838-843.
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



