Double 3-dimensional Riordan arrays and their applications
Résumé
In this paper, we give the group of double 3-dimensional Riordan arrays. Also we examine new sums involving Fibonacci numbers and special numbers, using combinatorial identities and the double 3-dimensional Riordan arrays.
Téléchargements
Références
A. T. Benjamin, D. Gaebler and R. Gaebler, A combinatorial approach to hyperharmonic numbers. Integers Electron. J. Combin. Number Theory 3, 1-9, (2003).
G. S. Cheon and S. T. Jin, The group of multi-dimensional Riordan arrays. Linear Algebra and its Applications 524, 263-277, (2017).
D. E. Davenport, L. W. Shapiro and L. C. Woodson The double Riordan group. The Electronic J. of Combin. 18(2), P33, (2012).
A. Gertsch, Generalized harmonic numbers. J. Number Theory 324, 7-10, (1997).
J. M. Santmyer, A Stirling like sequence of rational numbers. Discrete Mathematics 171(1-3), 229-235, (1997).
L. W. Shapiro, S. Getu, W. Woan and L. C. Woodson, The Riordan Group, Discrete Applied Mathematics 34, 229-239, (1991).
L. W. Shapiro, Bijections and the Riordan group. Theoret. Comput. Sci. 307, 403-413, (2003).
A. M. G. Solo, Multidimensional matrix mathematics: Multidimensional matrix equality, addition subtraction and multiplication, Part 2 of 6 in:proceeding of the world congress on engineering 2010, vol III, 1829-1833, (2010).
T. X. He, Sequences characterizations of double Riordan arrays and their compressions. Linear Algebra and Its Applications 549(15), 176-202, (2018).
C. Wang, P. Miska and I. Mez˝o, The r−derangement numbers. Discrete Math. 340, 1681-1692, (2017).
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



