Generalized solutions of the Cauchy problem involving $\Phi$-Caputo fractional derivatives

  • Abdellah Taqbibt Sultan Moulay Slimane University
  • Latifa El Bezdaoui Sultan Moulay Slimane University
  • M'hamed Elomari Sultan Moulay Slimane University
  • Lalla Saadia Chadli Sultan Moulay Slimane University

Résumé

The main objective of this research paper is to embed $\Phi$-Caputo fractional derivative in the Colombeau algebra of generalized functions and we investigate the existence and uniqueness of the Cauchy problem involving $\Phi$-Caputo fractional derivatives in the extended Colombeau algebras. Finally, we give an
example of how the ideas presented in the document can be applied.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Bibliographies de l'auteur

Abdellah Taqbibt, Sultan Moulay Slimane University

Laboratory of Applied Mathematics and Scientific Calculus

Latifa El Bezdaoui, Sultan Moulay Slimane University

Laboratory of Applied Mathematics and Scientific Calculus

M'hamed Elomari, Sultan Moulay Slimane University

Laboratory of Applied Mathematics and Scientific Calculus

Lalla Saadia Chadli, Sultan Moulay Slimane University

Laboratory of Applied Mathematics and Scientific Calculus

Références

H. A. Biagioni, A Nonlinear Theory of Generalized Functions, Lecture Notes in Math. Springer, Berlin, 1421, 1990.

J. F. Colombeau, New Generalized Functions and Multiplication of Distributions, North Holland, 1983.

J. F. Colombeau, Elementary Introduction in New Generalized Functions, North Holland, Amsterdam, 1985.

R. Hermann, M. Oberguggenberger, Ordinary differential equations and generalized functions, Nonlinear Theory of Generalized Functions, Chapman Hall, 85-98, 1999.

S. Melliani, A. Moujahid, L. S. Chadli and M. Elomari, Generalized solution for fractional Cauchy problem, J. Adv. Math. Stud. 9(10), 17-25, 2016.

M. Oberguggenberger, Multiplication of Distributions and Applications to PDEs, Pitman Res. Not. Math., Longman Sci. Techn., 259, 1992,

M. Oberguggenberger, Generalized functions and stochastic processes, Progress in Probability, Birkhauser Verlag Basel/Switzerland, 36, 215-229, 1995.

M. Stojanovic, Extension of Colombeau algebra to derivatives of arbitrary order Dq,q 2 R+ [{0}. Application to ODEs and PDEs with entire and fractional derivatives, Nonlinear Analysis, 71(11), 5458-5475, 2009.

R. Almeida, A. B. Malinowska, M. T. M. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Mathematical Methods in the Applied Sciences, 41(1), 336-352, 2018.

M. Stojanovic, Fondation of the fractional calculus in generalized function algebras. Anal. Appl., 10(4),439-467, 2012.

M. Stojanovic, Extended Colombeau algebra with derivatives in the set of real numbers, Preprint, 18, 2009.

A. El Mfadel, S. Melliani, M. Elomari, Existence and uniqueness results for Caputo fractional boundary value problems involving the p-Laplacian operator. U.P.B. Sci. Bull. Series A., 84(1), 37-46, 2022.

A. EL Mfadel, S. Melliani, M. Elomari, New existence results for nonlinear functional hybrid differential equations involving the -Caputo fractional derivative. Results in Nonlinear Analysis., 5(1), 78-86, 2022.

Publiée
2024-05-21
Rubrique
Articles