On recurrent sets of operators

Résumé

An operator $T$ acting on a Banach space $X$ is said to be recurrent if for each $U$; a nonempty open subset of $X$, there exists $n\in\mathbb{N}$ such that $T^n(U)\cap U\neq\emptyset.$ In the present work, we generalize this notion from a single operator to a set $\Gamma$ of operators. As application, we study the recurrence of $C$-regularized group of operators.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Bibliographies de l'auteur

Mohamed Amouch, Chouaib Doukkali University

Department of Mathematics

Otmane Benchiheb, Chouaïb Doukkali University

Department of Mathematics

Références

Amouch M, Benchiheb O (2022) Codiskcyclic sets of operators on complex topological vector spaces. Proyecciones (Antofagasta, On line) 41(6) 1439-1456.

Amouch M, Benchiheb O (2021) Some versions of supercyclicity for a set of operators. Filomat 35(5):1619-1627

Amouch M, Benchiheb O (2020) Diskcyclicity of sets of operators and applications. Acta Math Sin Eng Ser. 36(11):1203-1220.

Amouch M, Benchiheb O (2019) On cyclic sets of operators. Rendiconti del Circolo Matematico di Palermo Series 2. 68(3):521-529

Amouch M, Benchiheb O (2019) On linear dynamics of sets of operators. Turk J Math 43:402-411

Ansari M, Hedayatian K, Khani-robati, B (2018) On the density and transitivity of sets of operators. Turk J Math 42(1):181-189

Ansari M, Hedayatian K, Khani Robati B, Moradi A (2018) A note on topological and strict transitivity. Iran J Sci Technol Trans Sci 42(1):59-64

Bayart F, Matheron E (2009) Dynamics of linear operators. New York, NY, USA, Cambridge University Press

Bonilla A, Grosse-Erdmann K. G, López-Martínez A, Peris A (2022) Frequently recurrent operators. Journal of Functional Analysis 283(12), 109713.

Conejero JA, Kostic M, Miana PJ, Murillo-Arcila M (2016) Distributionally chaotic families of operators on Frechet spaces. Commun Pure Appl Anal 15(5):1915-1939

Costakis G, Manoussos A, Parissis I (2014) Recurrent linear operators. Complex Anal Oper Th 8:1601-1643

Costakis G, Parissis I (2012) Szemerédi’s theorem, frequent hypercyclicity and multiple recurrence. Math Scand 110: 251-272

Furstenberg H (1981) Recurrence in ergodic theory and combinatorial number theory. Princeton: Princeton University Press, M. B. Porter Lectures

Galán V.J, Martlínez-Gimenez F, Oprocha P, Peris A (2015) Product recurrence for weighted backward shifts. Appl. Math. Inf. Sci. 9: 2361-2365.

Grosse-Erdmann K.-G, Peris A (2011) Linear Chaos. (Universitext). Springer, London

Hilden HM, Wallen LJ (1994) Some cyclic and non-cyclic vectors of certain operators. Indiana Univ Math J 23:557-565

Karim N, Benchiheb O, Amouch M (2022) Recurrence of multiples of composition operators on weighted Dirichlet spaces. Adv Oper Theory 7(23) https://doi.org/10.1007/s43036-022-00186-1

Publiée
2024-05-21
Rubrique
Articles