Topological degree methods for non-local fractional $\mathfrak{p}(\mathrm{x}, .)$- laplacian elliptic equation

  • Abdesslam Ouaziz Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar Elmahraz, Fez, Morocco.
  • Ahmed Aberqi

Résumé

The purpose of this paper is mainly to investigate the existence of weak solutions to a class of fractional $\mathfrak{p}(\mathrm{x}, .)$- Laplacian problem as follows: \begin{eqnarray}\label{k1} %\begin{gathered} \left\{\begin{array}{llll} (\mathcal{L}_{\mathrm{K}} ^{s})_{\mathfrak{p}(\mathrm{x}, .)} \mathrm{v(\mathrm{x})}& = \lambda \beta(\mathrm{x})\vert \mathrm{v(\mathrm{x})}\vert^{r(\mathrm{x})-2}\mathrm{v(\mathrm{x})} + f(\mathrm{x}, \mathrm{v(\mathrm{x})})& \text { in }& U, \\ \hspace{1.6cm} \mathrm{v}&=0 & \text { in }& \mathbb{R}^{N} \backslash U, \end{array}\right. %\end{gathered} \end{eqnarray} where $f:U\times \mathbb{R} \rightarrow \mathbb{R}$ is a Carath\'{e}odory function, $U$ is a smooth bounded domain of $\mathbb{R^{N}}$, and $(\mathcal{L}_{\mathrm{K}} ^{s})_{\mathfrak{p}(\mathrm{x}, .)} $ is the fractional $\mathfrak{p}(\mathrm{x}, .)$- Laplacian operator. The main tool used here is the topological method introduced by Berkovits for demi-continuous operators of generalized type $(S_{+}),$ which is based on transforming our problem to an abstract Hammerstein equation.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Références

Aberqi, A., Ouaziz, A., Morse’s theory and local linking for a fractional (p1(x, .), p2(x, .)) : Laplacian problems on compact manifolds. J. Pseudo-Differ. Oper. Appl. 14, 41 (2023).

Aberqi, A., Ouaziz, A.: Blow-up and global existence of solutions for a new class of parabolic p(x, .)− Kirchhoff equation involving non linearity logarithmic. Journal of Pseudo-Differential Operators and Applications 16 (13), (2025)

Applebaum, D., Levy Processes and Stochastic Calculus, 2nd ed., Cambridge Stud. Adv. Math. 116, Cambridge University Press, Cambridge, (2009).

Bahrouni, A., Comparison and sub-supersolution principles for the fractional p(x)-Laplacian. J. Math. Anal. Appl. 458 (2018),1363–1372.

Bahrouni, A., Radulescu, V., On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discrete Contin. Dyn. Syst., Ser. S 11 (2018), 379–389.

Berkovits, J., Extension of the Leray Schauder degree for abstract Hammerstein type mappings. Journal of Differential Equations, vol. 234(2007), 289-310.

Berkovits, J., On degree theory for mappings of monotone, Ann. Acad. Sci. Fenn. Ser. A1 Diss. (1986), 58.

Berkovits, J. Topological degree theory and multiplication theorem for a class of nonlinear mappings, Bull. London Math. Soc. , 23 (1991), 596-606.

Berkovits, J., On the Leray-Schauder formula and bifurcation, J. Differential Equation, 173 (2001), 451-469.

Berkovits, J., Fabry, C., An extension of the topological degree theory in Hilbert space, Abstr. Appl. Anal. 6 (2005)

Berkovits, J., Fabry, C., Semilineair problems with a non-symmetric lineair part having an infinite -dimensional kernel, Port. Math. 61(2004), 439-460.

Bertoin, J., Levy Processes, Cambridge Tracts in Math. 121, Cambridge University Press, Cambridge, 1996

Bogdan, K., Sztonyk, P., Harnack’s inequality for stable L evy processes, Potential Anal. 22(2005), 133–150.

Brezis, H., Lieb, E.H., A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc., 88 (1983), 486-490.

Brouwer, L.E.J., Uber Abbildungen von Mannigfaltigkeiten. Math. Ann. 71(1912), 97-115.

Browder, F.E., Fixed point theory and nonlinear problems. Bull. Amer. Math. Soc. (N.S.), 9(1983), 1-39.

Caffarelli, L., Nonlocal equations, drifts and games. Nonlinear Partial Differential Equations. Abel Symposia, vol. 7(2012), 37–52.

Cont, R., Tankov, P., Financial Modelling with Jump Processes, Chapman Hall/CRC, Boca Raton, (2004).

Choi, E.B., Kim, J. M., Kim, Y.H., Infinitely many solutions for nonlinear elliptic equations of p(x)-Laplace type without the Ambrosetti and Rabinowitz condition. Proc. R. Soc. Edinb. 148(2018), 1–31.

Drabek, P., Kufner, A., Mustonen, V., Pseudo-monotonicity and degenerate or singular elliptic operators. Bull. Austral. Math. Soc. 58(1998), 213-221.

Fan, X.L., Zhao, D., On the spaces Lp(x)(U) and W k,p(x)(U). J. Math. Anal. Appl. 263(2001), 424–446.

Guo, L., Fractional p-Laplacian equations on Riemannian manifolds, Electronic Journal of Differential Equations, 156(2018), 1-–17.

Kaufmann, U., Rossi, J.D., Vidal, R., Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians. Electron. J. Qual. Theory Differ. Equ. (2017), 76.

Kim, I.S., Hong, S.J., A topological degree for operators of generalized (S+) type. Fixed Point Theory and Appl. 2015:194 (2015)

Leray, J., Schauder, J., Topologie et quations fonctionnelles. Ann. Sci. Ec. Norm., 51(1934), 45-78.

Ito, K., Lectures on Stochastic Processes, 2nd ed., Tata Inst. Fund. Res. Lecture Math. Phys. 24, Tata Institute of Fundamental Research, Bombay, (1984)

Majda, A., Tabak, E., A two-dimensional model for quasigeostrophic flow: Comparison with the two-dimensional Euler flow, Phys. 98(1996), 515–522.

Mawhin, J., Equivalence theorem for nonlinear operator equation and coincidence degree theory for some mapping in locally convex topological vector spaces 12(1972), 610-636.

M. Mihailescu, M., Radulescu, V., A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proc. R. Soc. Ser. 462(2006), 2625–2641.

Melian, J.G., Sabina de Lis, J., On the perturbation of eigenvalues for the p-Laplacian. Comptes Rendus de l’Academie des Sciences-Series I-Mathematics, 10 (2001), 893-898.

Ouaziz, A. and Aberqi, A., Infinitely many solutions to a Kirchhoff-type equation involving logarithmic nonlinearity via Morse’s theory. Boletın de la Sociedad Matematica Mexicana, 30(2024), p.10.

Ouaziz, A., Aberqi, A.: Singular fractional double-phase problems with variable exponent viaMorse’s theory. Filomat 38(21), 7579–7595 (2024).

Ouaziz, A., Aberqi, A. and Benslimane, O., On some weighted fractional p(·, ·)− Laplacian problems. Palestine Journal of Mathematics, 12(2023), 56-66.

Radulescu, V.D., Repovs, D., Partial Differential Equations with Variable Exponents, Variational Methods and Qualitative Analysis. Monographs and Research Notes in Mathematics. CRC Press, Taylor and Francis Group, Boca Raton (2015).

Servadei, R., Valdinoci, E., Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389(2012), 887–898.

M. Ruzicka, M., Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, (2000), vol. 1748. Springer, Berlin.

Sabri, A., Jamea, A., Talibi, A.H., Weak Solution for Fractional p(x)-Laplacian Problem With Dirichlet-Type Boundary Condition, Methods of Functional Analysis and Topology 26(2020), 272-282.

Simon, J., Regularite de la solution d’une equation non lineaire dans RN . Journees d’Analyse Non Lineaire (Proc. Conf., Besan¸con, 1977, pp. 205-227, Lecture Notes in Math., 665, Springer, Berlin.

Zeidler, E. Nonlinear Functional Analysis and its Applications. II/B : Nonlinear Monotone Operators, Springer-Verlag, New York, (1990).

Publiée
2025-08-10
Rubrique
Research Articles