A new generalized class of difference sequence spaces defined by Orlicz function

  • Nilambar Tripathy IIIT, Bhubaneswar
  • Ramakant Rath Kamala Nehru Women's College, Bhubaneswar

Résumé

In this article, our aim is to introduce a new generalized class of vector valued sequence space $F(E_k, \Delta^m_\nu, M,p,q)$ using Orlicz function $M$, where $(E_k)_{k=1}^{\infty}$ is the class of all seminormed space ~$(E_k,q_k)$ ~with $E_{k+1}\subseteq E_k$. It is assumed that $F$ is a normal, $AK$-sequence space with absolutely monotone paranorm $g_F$ and $p=(p_k)$ is a bounded sequence of positive real numbers. Here it is also proved that the space is a complete paranormed space under the paranorm $g$ along with cetrain inclusion relations.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Références

Ahmad, Z. U. and Mursaleen, M., Kothe-Toeplitz duals of some new sequence spaces and their matrix maps, Publ. Inst. Math. (Beograd), 42, 57-81, (1987).

Baliarsingh, P. and Dutta, S., On a Spectral Classification of the OperatorΔr ν over the Sequence Space c0, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 84, 555-561, (2014).

Colak, R., On some generalized sequence spaces, Commun. Fac. Sci.Univ. Ank. Ser., 48, 35-46, (1989).

Cooke, R., Infinite matrices and sequence spaces, Macmillan London, (1950).

Et, M. and Colak, R., On some generalized difference sequence spaces, Soochow J.Math.,21(4), 377-386, (1995).

Et, M. and Basarir, M., On some new generalized difference sequence spaces, Periodica Math. Hungar., 35(3), 169-175, (1997).

Et, Mikail and Esi, Ayhan., On Kothe-Toeplitz duals of generalized difference sequence spaces, Bull. Malays. Math. Sci. Soc, vol.23, No.1,25-32, (2000).

Gokhan, A., Et, M. and Esi, A., Generalized difference sequence spaces defined by orlicz functions, FU Fen ve Muhendislik Bilimleri Dergisi, vol.16, No.1, 139-144, (2004).

Kamthan, P.K., Gupta, M., Sequence Spaces and Series, Marcel Dekker Inc., New York, Basel, (1981).

Kızmaz, H., On certain sequence spaces, Canad. Math. Bull.,24(2), 169-176, (1981).

Krasnosel’skiı, M.A., Rutickiı, Y.B., Convex functions and Orlicz spaces , Groningen, Netherlands, (1961).

Leonard, I.E., Banach sequence spaces, J.Math.Anal.Appl.,54(1), 245-265, (1976).

Lindenstrauss, J. and Tzafriri, L., On Orlicz sequence spaces, Israel J.Math.(10), 379-390, (1971).

Maddox, I.J., Spaces of strongly summable sequence, Quart.J.Math.Oxford Ser.2,18, 345-355, (1967).

Maddox, I.J., Elements of functional analysis, 2nd ed. Cambridge, Cambridge University Press, (1988).

Parashar, S. D. and Choudhary, B., Sequence spaces defined by Orlicz functions, Indian Journal of Pure and Applied Mathematics, 25, 419-428, (1994).

Ratha, A. and Srivastava, P.D. On some vector valued sequence spaces L(p) (Ek, Λ), Ganita, 47(1), 1-12, (1996).

Rosier, R.C., Dual spaces of certain vector sequence spaces, Pacific J. Math., 25, 973-978, (1973).

Dutta, S., Baliarsing, P., On the fine spectra of the generalized rth difference operator Δr ν on the sequence space l1, Aplied Mathematics and computation, 219(4), 1776-1784, (2012)

Dutta, S., Baliarsingh, P. and Tripathy, N., On spectral estimations of the generalized forward difference operator, Revista de la Real Academia de Ciencias Exactas, Fısicas y Naturales. Serie A. Matematicas, 115(4), 179, (2021).

Srivastava, P.D. and Ghosh, D.K., On vector valued sequence spaces hN(Ek), lM(B(Ek, Y )) and lm(E′k), Journal of mathematical analysis and applications, vol-327, 1029-1040, (2007).

Srivastava PD, Kumar S., Generalized vector valued paranormed sequence space using Orlicz function, The Journal of Analysis, 28(1), 71-87, (2020).

Subramanian, N., The difference sequence space defined on Orlicz function, International Journal of Mathematical Analysis, vol.2, no.15, 721-729, (2008).

Tripathy, B. C. and Mahanta, S., On a class of sequences related to the lˆ p space defined by Orlicz functions, Soochow Journal of Mathematics, vol-29, No.4, 379-392,(2003).

Tripathy, B. C. and Mahanta, S., On a class of generalized lacunary difference sequence spaces defined by Orlicz functions, Acta mathematicae applicatae sinica, english series 20, no.2 231-238, (2004).

Tripathy, B. C., Mahanta, S. and Et, M., On generalized lacunary difference vector valued paranormed sequences defined by Orlicz functions, International J. Math. Sci 4(2), 341-355, (2005).

Wilansky, A., Summability through functional analysis, vol.85, North-Holland Mathematics Studies, Amsterdam, Netherlands (1984).

Zeller, K., Theorie der Limitierungsverfahren, Springer, Berlin(1958).

Publiée
2025-03-24
Rubrique
Research Articles