Some Inequalities for Polynomials with a Multiple Zero at Origin
Resumen
If $P(z)$ is a polynomial of degree $n$ with origin as a zero of some multiplicity, then the estimate for $|P'(z)|$ in terms of$|P(z)|$ on $| z|=1$, when all other zeros of $P(z)$ lie in $|z|\le k,~ k\le 1$, is known [A. Aziz and W. M. Shah, \textit{Math. Inequal. Appl.,}~\textbf{7}(3)(2004),~379-391]. In this paper we prove some results in case $P(z)$ has a
zero of multiplicity $s\ge 0$ at origin and all other zeros in $|z|\ge k, k\ge 1,$ as well as on $|z|=k , k\leq1$.
We also consider s-fold lacunary polynomials of degree $n,$ by which we generalize some earlier well known results.
Descargas
Citas
A. Aziz, A refinement of an inequality of S. Bernstein, J. Math. Anal. Appl., 142(1989), 1-10.
A. Aziz and Q. G. Mohammad, Simple proof of a Theorem of Erdos and Lax, Proc. Amer. Math. Soc., 80 (1980), 119-122.
A. Aziz and W. M. Shah, Inequalities for a polynomial and its derivative, Math. Inequal. Appl., 7(3)(2004), 379-391.
S. Bernstein, Sur la limitation des derivees des polynomes,C. R. Acad. Sci. Paris., 190(1930), 338-340.
K. K. Dewan, S. Hans, On maximum modulus for the derivative of a polynomial, Ann. Univ. Mariae Curie-Sklodowska Sect. A 63(2009), 55-62.
K. K. Dewan, A. Mir,Note on a theorem of S. Bernstein, Southeast Asian Bulletin of Math. 31 (2007), 691-695.
C. Frappier, Q. I. Rahman and St. Rusheweyh, New Inequalities for Polynomials, Trans. Amer. Math. Soc., 288(1985), 69-99.
P. D. Lax, Proof of a conjecture of P. Erdos on the derivative of a polynomial, Bull. Amer. Math. Soc., 50(1944), 509-513.
M. A. Malik, On the derivative of a polynomial, J. London. Math. Soc., 2(1)(1969), 57-60.
M. Y. Mir, S. L. Wali and W. M. Shah, Generalization of some differential inequalities for polynomials, J. Cont. Math. Anal., 58(2023), 81-88.
G. V. Milovanovic, D. S. Mitrinovic and Th. M. Rassias; Topics in Polynomials, Extremal Polynomials , Inequalities, Zeros. (Singapore, World Scientific Publishing Co., Inc., River Edge, NJ)1994.
G. Polya and G. Szego, Problems and Theorems in Analysis, Vol. 1, Springer, New York, 1972.
Q. I. Rahman and G. Schmeisser, Analytic theory of polynomials, Oxford University Press, Oxford, 2002.
P. Turan, Uber die Ableitung von Polynomen, Compositio Math., 7(1939), 89-95.
Derechos de autor 2025 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



