The Ring of Integers in the Canonical Structures of the Plane
Résumé
The canonical structures of the plane are those that result, up to isomorphism, from the rings that have the form $\mathds{R}[x]/(ax^2+bx+c)$ with $a\neq 0$.That ring is isomorphic to $\mathds{R}[\theta]$, where $\theta$ is the equivalence class of x, which satisfies $\theta^2 = \left( -\dfrac{c}{a} \right) + \theta \left(-\dfrac{b}{a}\right)$. On the other hand, it is known that, up to isomorphism, there are only three canonical structures: the corresponding to $\theta^2 = -1$ (the complex numbers), $\theta^2 = 1$ (the perplex or hyperbolic numbers) and $\theta^2 = 0$ (the parabolic numbers). This article copes with the algebraic structure of the rings of integers $\mathds{Z}[\theta]$ in the perplex and parabolic cases by \emph{analogy} to the complex cases: the ring of Gaussian integers. For those rings a \emph{division algorithm} is proved and it is obtained, as a consequence, the characterization of the prime and irreducible elements.Téléchargements
Les données sur le téléchargement ne sont pas encore disponible.
Publiée
2025-12-05
Numéro
Rubrique
Research Articles
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



