Common neighborhood (signless) Laplacian spectrum and energy of CCC-graph
Common neighborhood (signless) Laplacian spectrum and energy
Resumo
In this paper, we consider commuting conjugacy class graph (abbreviated as CCC-graph) of a finite group $G$ which is a graph with vertex set $\{x^G : x \in G \setminus Z(G)\}$ (where $x^G$ denotes the conjugacy class containing $x$) and two distinct vertices $x^G$ and $y^G$ are joined by an edge if there exist some elements $x'\in x^G$ and $y'\in y^G$ such that they commute. We compute common neighborhood (signless) Laplacian spectrum and energy of CCC-graph of finite non-abelian groups whose central quotient is isomorphic to either $\mathbb{Z}_p \times \mathbb{Z}_p$ (where $p$ is any prime) or the dihedral group $D_{2n}$ ($n \geq 3$); and determine whether CCC-graphs of these groups are common neighborhood (signless) Laplacian hyperenergetic/borderenergetic. As a consequence, we characterize certain finite non-abelian groups viz. $D_{2n}$, $T_{4n}$, $U_{6n}$, $U_{(n, m)}$, $SD_{8n}$ and $V_{8n}$ such that their CCC-graphs are common neighborhood (signless) Laplacian hyperenergetic/borderenergetic. Further, we compare various common neighborhood energies of CCC-graphs of these groups and describe their closeness graphically.
Downloads
Referências
A. Alwardi, N. D. Soner and I. Gutman, On the common-neighborhood energy of a graph, {\em Bulletin. Classe des Sciences
Math$\acute{\rm e}$matiques et Naturelles. Sciences Math$\acute{\rm e}$matiques} {\bf 36}, 49-59, 2011.
P. Bhowal and R. K. Nath, Spectral aspects of commuting conjugacy class graph of finite groups, {\em Algebraic Structures and Their Applications} {\bf 8}(2), 67-118, 2021.
P. Bhowal and R. K. Nath, Genus of commuting conjugacy class graph of certain finite groups, {\em Algebraic Structures and Their Applications} {\bf 9}(1), 93-108, 2022.
P. J. Cameron, Graphs defined on groups, {\em International Journal of Group Theory} {\bf 11}(2), 53-107, 2022.
K. C. Das and S. A. Mojallal, On Laplacian energy of graphs, {\em Discrete Mathematics} {\bf 325}, 52-64, 2014.
P. Dutta, B. Bagchi and R. K. Nath, Various energies of commuting graphs of finite non-abelian groups, {\em Khayyam Journal of Mathematics} \textbf{6}(1), 27–45, 2020.
P. Dutta, J. Dutta and R. K. Nath, Laplacian spectrum of non-commuting graphs of finite groups, {\em Indian journal of pure and applied mathematics} \textbf{49}(2), 205-216, 2018.
J. Dutta and R. K. Nath, Finite groups whose commuting graphs are integral, {\em Matematički Vesnik} \textbf{69}(3), 226–230, 2017.
J. Dutta and R. K. Nath, Laplacian and signless Laplacian spectrum of commuting graphs of finite groups, {\em Khayyam Journal of Mathematics} \textbf{4}(1), 77–87, 2018.
P. Dutta and R. K. Nath, On Laplacian energy of non-commuting graphs of finite groups, {\em Journal of Linear and Topological Algebra} \textbf{7}(2), 121–132, 2018.
W. N. T. Fasfous and R. K. Nath, Inequalities involving energy and Laplacian energy of non-commuting graphs of finite groups, {\em Indian Journal of Pure and Applied Mathematics}, 2023 https://doi.org/10.1007/s13226-023-00519-7.
W. N. T. Fasfous, R. K. Nath and R. Sharafdini, Various spectra and energies of commuting graphs of finite rings, {\em Hacettepe Journal of Mathematics and Statistics} {\bf 49}(6), 1915-1925, 2020.
W. N. T. Fasfous, R. Sharafdini, and R. K. Nath, Common neighborhood spectrum of commuting graphs of finite groups, {\em Algebra and Discrete Mathematics} {\bf 32}(1), 33-48, 2021.
H. A. Ganie and S. Pirzada, On the bounds for signless Laplacian energy of a graph, {\em Discrete Applied Mathematics} \textbf{228}(10), 3–13, 2017.
S. Gong, X. Li, G. Xu, I. Gutman, and B. Furtula,~Borderenergetic Graphs, {\em MATCH Communications in Mathematical and in Computer Chemistry} \textbf{74}, 321-332, 2015.
R. Grone and R. Merris, The Laplacian spectrum of a graph II, {\em SIAM Journal of Discrete Mathematics} \textbf{7}(2), 221-299, 1994.
I. Gutman, The energy of a graph, {\em Berichte der Mathematisch-Statistischen Sektion im Forschungszentrum Graz} {\bf 103}, 1-22, 1978.
I. Gutman, Hyperenergetic molecular graphs, {\em Journal of the Serbian Chemical Society} {\bf 64}, 199-205, 1999.
I. Gutman, N. M. M. Abreu, C. T. M. Vinagre, A. S. Bonifacioa and S. Radenkovic, Relation between energy and Laplacian energy, {\em MATCH Communications in Mathematical and in Computer Chemistry} {\bf 59}, 343-354, 2008.
I. Gutman and B. Furtula, Survey of Graph Energies, {\em Mathematics Interdisciplinary Research} {\bf 2}, 85-129, 2017.
I. Gutman and B. Furtula, Graph energies and their applications, {\em Bulletin. Classe des Sciences
Math$\acute{\rm e}$matiques et Naturelles. Sciences Math$\acute{\rm e}$matiques}
\textbf{44}, 29-45, 2019.
I. Gutman and B. Zhou, Laplacian energy of a graph, {\em Linear Algebra and its Applications} {\bf 414}, 29-37, 2006.
F. Harary and A. J. Schwenk, Which graphs have integral spectra?, {\em Graphs and Combinatorics}, Lect. Notes Maths. \textbf{406}, 45-51, 1974.
M. Herzog, M. Longobardi and M. Maj, On a commuting graph on conjugacy classes of groups, {\em Communications in Algebra} {\bf 37}(10), 3369-3387, 2009.
F. E. Jannat and R. K. Nath, Common neighbourhood spectrum and energy of commuting conjugacy class graph, {\em Journal of Algebraic Systems} \textbf{12}(2), 301-326, 2025.
F. E. Jannat and R. K. Nath, Common neighbourhood Laplacian and signless Laplacian spectra and energies of commuting graph, https://arxiv.org/pdf/2403.01082.pdf.
F. E. Jannat, R. K. Nath and K. C. Das, Common neighborhood energies and their relations with Zagreb index, https://arxiv.org/abs/2402.15416.
J. Liu, and B. Liu, On the relation between energy and Laplacian energy, {\em MATCH Commun. Math. Comput. Chem.} {\bf 61}, 403--406, 2009.
A. Mohammadian, A. Erfanian, D. G. M. Farrokhi and B. Wilkens, Triangle-free commuting conjugacy class graphs, {\em Journal of Group Theory} {\bf 19}, 1049-1061, 2016.
R. K. Nath, W. N. T. Fasfous, K. C. Das and Y. Shang, Common neighbourhood energy of commuting graphs of finite groups, {\em Symmetry} \textbf{13}(9), 1651-1662, 2021.
M. A. Salahshour and A. R. Ashrafi, Commuting conjugacy class graphs of finite groups, {\em Algebraic Structures and Their Applications} {\bf 7}(2), 135-145, 2020.
M. A. Salahshour and A. R. Ashrafi, Commuting conjugacy class graph of finite CA-groups, {\em Khayyam Journal of Mathematics} {\bf 6}(1), 108-118, 2020.
M. A. Salahshour, Commuting conjugacy class graph of $G$ when $\frac{G}{Z(G)}\cong D_{2n}$, {\em Mathematics Interdisciplinary Research} {\bf 1}, 379-385, 2020.
S. K. Simic and Z. Stanic, Q-integral graphs with edge-degrees at most five, {\em Discrete Mathematics} {\bf 308}, 4625-4634, 2008.
D. Stevanovic, I. Stankovic and M. Milosevic, On the relation between energy and Laplacian energy of graphs, {\em MATCH Commun. Math. Comput. Chem.} {\bf 61}, 395--401, 2009.
Q. Tao, and Y. Hou, Q-borderenergetic graphs, {\em AKCE International Journal of Graphs and Combinatorics} \textbf{17}(1), 38-44, 2020.
F. Tura, L-borderenergetic graphs, {\em MATCH Communications in Mathematical and in Computer Chemistry} \textbf{77}, 37-44, 2017.
H. B. Walikar, H. S. Ramane, and P. R. Hampiholi, On the energy of a graph, {\em Graph connections}, Eds. R. Balakrishnan, H. M. Mulder and A. Vijayakumar, Allied publishers, New Delhi, 120-123, 1999.
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



