Common neighborhood (signless) Laplacian spectrum and energy of CCC-graph

Common neighborhood (signless) Laplacian spectrum and energy

  • Firdous Jannat
  • Rajat Kanti Nath

Resumo

In this paper, we consider commuting conjugacy class graph (abbreviated as CCC-graph) of a finite group $G$ which is a graph with vertex set $\{x^G : x \in G \setminus Z(G)\}$ (where $x^G$ denotes the conjugacy class containing $x$) and two distinct vertices $x^G$ and $y^G$ are joined by an edge if there exist some elements $x'\in x^G$ and $y'\in y^G$ such that they commute. We compute common neighborhood (signless) Laplacian spectrum and energy of CCC-graph of finite non-abelian groups whose central quotient is isomorphic to either $\mathbb{Z}_p \times \mathbb{Z}_p$ (where $p$ is any prime) or the dihedral group $D_{2n}$ ($n \geq 3$); and determine whether CCC-graphs of these groups are common neighborhood (signless) Laplacian hyperenergetic/borderenergetic. As a consequence, we characterize certain finite non-abelian groups viz. $D_{2n}$, $T_{4n}$, $U_{6n}$, $U_{(n, m)}$, $SD_{8n}$ and $V_{8n}$ such that their CCC-graphs are common neighborhood (signless) Laplacian hyperenergetic/borderenergetic. Further, we compare various common neighborhood energies of CCC-graphs of these groups and describe their closeness graphically.

Downloads

Não há dados estatísticos.

Referências

O. Ahmadi, N. Alon, I. F. Blake and I. E. Shaparlinski, Graphs with integral spectrum, {\em Linear Algebra and its Application} \textbf{430}(1), 547-552, 2009.

A. Alwardi, N. D. Soner and I. Gutman, On the common-neighborhood energy of a graph, {\em Bulletin. Classe des Sciences
Math$\acute{\rm e}$matiques et Naturelles. Sciences Math$\acute{\rm e}$matiques} {\bf 36}, 49-59, 2011.



P. Bhowal and R. K. Nath, Spectral aspects of commuting conjugacy class graph of finite groups, {\em Algebraic Structures and Their Applications} {\bf 8}(2), 67-118, 2021.


P. Bhowal and R. K. Nath, Genus of commuting conjugacy class graph of certain finite groups, {\em Algebraic Structures and Their Applications} {\bf 9}(1), 93-108, 2022.


P. J. Cameron, Graphs defined on groups, {\em International Journal of Group Theory} {\bf 11}(2), 53-107, 2022.


K. C. Das and S. A. Mojallal, On Laplacian energy of graphs, {\em Discrete Mathematics} {\bf 325}, 52-64, 2014.


P. Dutta, B. Bagchi and R. K. Nath, Various energies of commuting graphs of finite non-abelian groups, {\em Khayyam Journal of Mathematics} \textbf{6}(1), 27–45, 2020.


P. Dutta, J. Dutta and R. K. Nath, Laplacian spectrum of non-commuting graphs of finite groups, {\em Indian journal of pure and applied mathematics} \textbf{49}(2), 205-216, 2018.


J. Dutta and R. K. Nath, Finite groups whose commuting graphs are integral, {\em Matematički Vesnik} \textbf{69}(3), 226–230, 2017.


J. Dutta and R. K. Nath, Laplacian and signless Laplacian spectrum of commuting graphs of finite groups, {\em Khayyam Journal of Mathematics} \textbf{4}(1), 77–87, 2018.




P. Dutta and R. K. Nath, On Laplacian energy of non-commuting graphs of finite groups, {\em Journal of Linear and Topological Algebra} \textbf{7}(2), 121–132, 2018.


W. N. T. Fasfous and R. K. Nath, Inequalities involving energy and Laplacian energy of non-commuting graphs of finite groups, {\em Indian Journal of Pure and Applied Mathematics}, 2023 https://doi.org/10.1007/s13226-023-00519-7.



W. N. T. Fasfous, R. K. Nath and R. Sharafdini, Various spectra and energies of commuting graphs of finite rings, {\em Hacettepe Journal of Mathematics and Statistics} {\bf 49}(6), 1915-1925, 2020.


W. N. T. Fasfous, R. Sharafdini, and R. K. Nath, Common neighborhood spectrum of commuting graphs of finite groups, {\em Algebra and Discrete Mathematics} {\bf 32}(1), 33-48, 2021.






H. A. Ganie and S. Pirzada, On the bounds for signless Laplacian energy of a graph, {\em Discrete Applied Mathematics} \textbf{228}(10), 3–13, 2017.




S. Gong, X. Li, G. Xu, I. Gutman, and B. Furtula,~Borderenergetic Graphs, {\em MATCH Communications in Mathematical and in Computer Chemistry} \textbf{74}, 321-332, 2015.


R. Grone and R. Merris, The Laplacian spectrum of a graph II, {\em SIAM Journal of Discrete Mathematics} \textbf{7}(2), 221-299, 1994.



I. Gutman, The energy of a graph, {\em Berichte der Mathematisch-Statistischen Sektion im Forschungszentrum Graz} {\bf 103}, 1-22, 1978.


I. Gutman, Hyperenergetic molecular graphs, {\em Journal of the Serbian Chemical Society} {\bf 64}, 199-205, 1999.




I. Gutman, N. M. M. Abreu, C. T. M. Vinagre, A. S. Bonifacioa and S. Radenkovic, Relation between energy and Laplacian energy, {\em MATCH Communications in Mathematical and in Computer Chemistry} {\bf 59}, 343-354, 2008.


I. Gutman and B. Furtula, Survey of Graph Energies, {\em Mathematics Interdisciplinary Research} {\bf 2}, 85-129, 2017.




I. Gutman and B. Furtula, Graph energies and their applications, {\em Bulletin. Classe des Sciences
Math$\acute{\rm e}$matiques et Naturelles. Sciences Math$\acute{\rm e}$matiques}
\textbf{44}, 29-45, 2019.




I. Gutman and B. Zhou, Laplacian energy of a graph, {\em Linear Algebra and its Applications} {\bf 414}, 29-37, 2006.


F. Harary and A. J. Schwenk, Which graphs have integral spectra?, {\em Graphs and Combinatorics}, Lect. Notes Maths. \textbf{406}, 45-51, 1974.


M. Herzog, M. Longobardi and M. Maj, On a commuting graph on conjugacy classes of groups, {\em Communications in Algebra} {\bf 37}(10), 3369-3387, 2009.


F. E. Jannat and R. K. Nath, Common neighbourhood spectrum and energy of commuting conjugacy class graph, {\em Journal of Algebraic Systems} \textbf{12}(2), 301-326, 2025.


F. E. Jannat and R. K. Nath, Common neighbourhood Laplacian and signless Laplacian spectra and energies of commuting graph, https://arxiv.org/pdf/2403.01082.pdf.


F. E. Jannat, R. K. Nath and K. C. Das, Common neighborhood energies and their relations with Zagreb index, https://arxiv.org/abs/2402.15416.


J. Liu, and B. Liu, On the relation between energy and Laplacian energy, {\em MATCH Commun. Math. Comput. Chem.} {\bf 61}, 403--406, 2009.


A. Mohammadian, A. Erfanian, D. G. M. Farrokhi and B. Wilkens, Triangle-free commuting conjugacy class graphs, {\em Journal of Group Theory} {\bf 19}, 1049-1061, 2016.


R. K. Nath, W. N. T. Fasfous, K. C. Das and Y. Shang, Common neighbourhood energy of commuting graphs of finite groups, {\em Symmetry} \textbf{13}(9), 1651-1662, 2021.


M. A. Salahshour and A. R. Ashrafi, Commuting conjugacy class graphs of finite groups, {\em Algebraic Structures and Their Applications} {\bf 7}(2), 135-145, 2020.


M. A. Salahshour and A. R. Ashrafi, Commuting conjugacy class graph of finite CA-groups, {\em Khayyam Journal of Mathematics} {\bf 6}(1), 108-118, 2020.


M. A. Salahshour, Commuting conjugacy class graph of $G$ when $\frac{G}{Z(G)}\cong D_{2n}$, {\em Mathematics Interdisciplinary Research} {\bf 1}, 379-385, 2020.







S. K. Simic and Z. Stanic, Q-integral graphs with edge-degrees at most five, {\em Discrete Mathematics} {\bf 308}, 4625-4634, 2008.


D. Stevanovic, I. Stankovic and M. Milosevic, On the relation between energy and Laplacian energy of graphs, {\em MATCH Commun. Math. Comput. Chem.} {\bf 61}, 395--401, 2009.



Q. Tao, and Y. Hou, Q-borderenergetic graphs, {\em AKCE International Journal of Graphs and Combinatorics} \textbf{17}(1), 38-44, 2020.


F. Tura, L-borderenergetic graphs, {\em MATCH Communications in Mathematical and in Computer Chemistry} \textbf{77}, 37-44, 2017.


H. B. Walikar, H. S. Ramane, and P. R. Hampiholi, On the energy of a graph, {\em Graph connections}, Eds. R. Balakrishnan, H. M. Mulder and A. Vijayakumar, Allied publishers, New Delhi, 120-123, 1999.
Publicado
2025-08-10
Seção
Artigos