<b>Nonexistence of Global Solutions to an Elliptic Equation with a Dynamical Boundary Condition</b> - doi: 10.5269/bspm.v22i2.7475
Résumé
We consider the equation \Deltau = 0 posed in Q := (0;+\infty) \times \Omega ; \Omega:=\{x = (x'; x_ N)/ x' \in R^{N-1}; x_N > 0\}; with the dynamical boundary conditionB(t, x',0)u_{tt} + A(t, x',0)u_t - u_{x_N} \geq D(t; x',0; 0) |u|^q on \Sigma := (0;\infty) \times R^{N-1} \times \{0\} and give conditions on the coefficient functions A(t, x',0); B(t, x',0; 0) and D(t, x'; 0) for the nonexistence of global solutions.
Téléchargements
Les données sur le téléchargement ne sont pas encore disponible.
Numéro
Rubrique
Articles
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).