<b>Independence Number, Neighborhood Intersection and Hamiltonian Properties</b> - doi: 10.5269/bspm.v22i2.7480
Résumé
Let G be a 2-connected simple graph of order n with the independence number\alpha. We show here that \forall u; v \in V (G)\backslash\{u,v\} and any z \in \{u,v\}; w \in V (G)\backslash \{u,v\}; with d(w; z) = 2, if |N(u) \ cap N(w)| \geq \alpha - 1 or |N(v) \cap N(w)| \geq \alpha - 1, then G is Hamiltonian, unless G belongs to a kind of special graphs.Téléchargements
Les données sur le téléchargement ne sont pas encore disponible.
Numéro
Rubrique
Articles
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).