On the Relationship between Uniqueness Sets and Interpolation Sets in Functional Quasinormed Spaces
Résumé
Given a functional quasinormed space we obtain conditions for a uniformly discrete set to to be either a uniqueness set or an interpolation set. We apply these results to Paley-Wiener spaces. We also obtain new results on both the refinement of stable sampling sets and the extension of stable interpolation sets in quasinormed spaces.
Téléchargements
Les données sur le téléchargement ne sont pas encore disponible.
Références
[1] Avantaggiati, A., Loreti, P., Velluci, P., An Explicit Bound for Stability of Sinc Bases, Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics 1 (2015), 473–480, doi 10.5220/0005512704730480.
[2] Avantaggiati, A., Loreti, P., Velluci, P., Kadec-1/4 Theorem for Sinc Bases, (2016) ArXiv 1603.08762v1.
[3] Avdonin, S. A., On the question of Riesz bases of exponential functions in L2, Vestnik Leningrad Univ. 13 (1974), 5–12 (Russian). English translation in Vestnik Leningrad Univ. Math. 7 (1979), 203–211.
[4] Beurling, A., Balayage of Fourier-Stieltjes Transforms. In: The collected Works of Arne Beurling, vol. 2, Harmonic Analysis., Birkh¨auser, Boston, 1989.
[5] Beurling, A., Interpolation for an interval in R. In The collected Works of Arne Beurling 2, Harmonic Analysis, Birkhuser, Boston (1989), 351–365.
[6] Beurling, A., Malliavin, P. On the closure of characters and the zeros of entire functions., Acta Math., 118 (1967), 79–93.
[7] Kadec, M. I., The exact value of the Paley-Wiener constant, Sov. Math. Dokl. 5 (1964), 559–561.
[8] Levinson, N., Gap and Density Theorems, Colloquium Publications 26, First Edition, American Mathematical Soc., 1940.
[9] López Nicolás, J. A., Irregular Stable Sampling and Interpolation in Functional Normed Spaces, Bol. Soc. Paran. Mat. 40 (2019), 1–13, doi 10.5269/bspm.45497.
[10] López Nicolás, J. A., On Stable Sampling and Interpolation in Bernstein Spaces, Revista Colombiana de Matemáticas 56 (2) (2022), 1–13, doi 10.15446/recolma.v56n2.108383.
[11] López Nicolás, J. A., Recombination of Stable Sampling Sets and Stable Interpolation Sets in Functional Quasinormed Spaces, Bol. Soc. Paran. Mat. 42 (2024), 1–14, doi 10.5269/bspm.62925.
[12] Mitkovski, M., Wick, B. D., On the Uniqueness Sets in the Fock Space arXiv-org. preprint, arXiv:1306.0318 [math.CV], 2013, doi 10.48550/ARXIV.1306.0318.
[13] Neumann, J. von, The Mathematical Foundations of Quantum Mechanics Princeton University Press, NJ, 1955.
[14] Olevskii, A., Ulanovskii, A., Universal Sampling and Interpolation of Band-limited Signals Geometric and Functional Analysis 18 (3) (2008), 1029–1052, doi 10.1007/s00039-008-0674-7.
[15] Olevskii, A., Ulanovskii, A., Uniqueness sets for unbounded spectra Comptes Rendus Mathematique 349 (11) (2011), 679–681, doi 10.1016/j.crma.2011.05.010.
[16] Olevskii, A., Ulanovskii, A., Discrete Uniqueness Sets for Functions with Spectral Gaps Russian Academy of Sciences Sbornik Mathematics 208 (6) (2016), 43–53, doi 10.1070/SM8837.
[17] Olevskii, A., Ulanovskii, A., Functions with Disconnected Spectrum, University Lecture Series, First Edition, American Mathematical Society, 2016.
[18] Olevskii, A., Ulanovskii, A., On the duality between sampling and interpolation Analysis Mathematica 42 (2016), 43–53, doi 10.1007/s10476-016-0104-2.
[19] Paley, R., Wiener, N. Fourier transforms in the complex domain, Amer. Math. Soc. Colloquium Publications 19 (1934).
[20] Plancherel, M., Pólya, G., Fonctions entiéres et intégrales de Fourier multiples (seconde partie) Comment. Math. Helv. 10 (1) (1937), 110–163, doi 10.1007/bf01214286.
[21] Sedleckii, A. M., Nonharmonic Fourier Series, Sib. Math. J. 12 (1971a), 793–802.
[22] Sedletskii, A. M., Nonharmonic Analysis, J. Math. Sc. 116 (5) (2009), 3551–3619.
[23] Ullrich, D., Divided differences and systems of nonharmonic Fourier series, Proc. Amer. Math. Soc. 80 (1980), 47–57.
[24] Young, R. M., An introduction to Nonharmonic Fourier Series, Academic Press, Second Edition, 2001.
[2] Avantaggiati, A., Loreti, P., Velluci, P., Kadec-1/4 Theorem for Sinc Bases, (2016) ArXiv 1603.08762v1.
[3] Avdonin, S. A., On the question of Riesz bases of exponential functions in L2, Vestnik Leningrad Univ. 13 (1974), 5–12 (Russian). English translation in Vestnik Leningrad Univ. Math. 7 (1979), 203–211.
[4] Beurling, A., Balayage of Fourier-Stieltjes Transforms. In: The collected Works of Arne Beurling, vol. 2, Harmonic Analysis., Birkh¨auser, Boston, 1989.
[5] Beurling, A., Interpolation for an interval in R. In The collected Works of Arne Beurling 2, Harmonic Analysis, Birkhuser, Boston (1989), 351–365.
[6] Beurling, A., Malliavin, P. On the closure of characters and the zeros of entire functions., Acta Math., 118 (1967), 79–93.
[7] Kadec, M. I., The exact value of the Paley-Wiener constant, Sov. Math. Dokl. 5 (1964), 559–561.
[8] Levinson, N., Gap and Density Theorems, Colloquium Publications 26, First Edition, American Mathematical Soc., 1940.
[9] López Nicolás, J. A., Irregular Stable Sampling and Interpolation in Functional Normed Spaces, Bol. Soc. Paran. Mat. 40 (2019), 1–13, doi 10.5269/bspm.45497.
[10] López Nicolás, J. A., On Stable Sampling and Interpolation in Bernstein Spaces, Revista Colombiana de Matemáticas 56 (2) (2022), 1–13, doi 10.15446/recolma.v56n2.108383.
[11] López Nicolás, J. A., Recombination of Stable Sampling Sets and Stable Interpolation Sets in Functional Quasinormed Spaces, Bol. Soc. Paran. Mat. 42 (2024), 1–14, doi 10.5269/bspm.62925.
[12] Mitkovski, M., Wick, B. D., On the Uniqueness Sets in the Fock Space arXiv-org. preprint, arXiv:1306.0318 [math.CV], 2013, doi 10.48550/ARXIV.1306.0318.
[13] Neumann, J. von, The Mathematical Foundations of Quantum Mechanics Princeton University Press, NJ, 1955.
[14] Olevskii, A., Ulanovskii, A., Universal Sampling and Interpolation of Band-limited Signals Geometric and Functional Analysis 18 (3) (2008), 1029–1052, doi 10.1007/s00039-008-0674-7.
[15] Olevskii, A., Ulanovskii, A., Uniqueness sets for unbounded spectra Comptes Rendus Mathematique 349 (11) (2011), 679–681, doi 10.1016/j.crma.2011.05.010.
[16] Olevskii, A., Ulanovskii, A., Discrete Uniqueness Sets for Functions with Spectral Gaps Russian Academy of Sciences Sbornik Mathematics 208 (6) (2016), 43–53, doi 10.1070/SM8837.
[17] Olevskii, A., Ulanovskii, A., Functions with Disconnected Spectrum, University Lecture Series, First Edition, American Mathematical Society, 2016.
[18] Olevskii, A., Ulanovskii, A., On the duality between sampling and interpolation Analysis Mathematica 42 (2016), 43–53, doi 10.1007/s10476-016-0104-2.
[19] Paley, R., Wiener, N. Fourier transforms in the complex domain, Amer. Math. Soc. Colloquium Publications 19 (1934).
[20] Plancherel, M., Pólya, G., Fonctions entiéres et intégrales de Fourier multiples (seconde partie) Comment. Math. Helv. 10 (1) (1937), 110–163, doi 10.1007/bf01214286.
[21] Sedleckii, A. M., Nonharmonic Fourier Series, Sib. Math. J. 12 (1971a), 793–802.
[22] Sedletskii, A. M., Nonharmonic Analysis, J. Math. Sc. 116 (5) (2009), 3551–3619.
[23] Ullrich, D., Divided differences and systems of nonharmonic Fourier series, Proc. Amer. Math. Soc. 80 (1980), 47–57.
[24] Young, R. M., An introduction to Nonharmonic Fourier Series, Academic Press, Second Edition, 2001.
Publiée
2025-08-24
Numéro
Rubrique
Research Articles
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



