The Outer independent $\{2\}$-domination in trees

Outer independent $\{2\}$-domination in trees

  • Seyed Mahmoud Sheikholeslami Azarbaijan Shahid Madani Univeristy
  • M. Esmaeiliyan Azarbaijan Shahid Madani University
  • Jafar Amjadi Azarbaijan Shahid Madani University
  • M. Chellali University of Blida

Résumé

An outer independent $\{2\}$-dominating function (OI$\{2\}$D-function) of a
graph $G$ is a function $f:V(G)\longrightarrow\{0,1,2\}$ such that no two
vertices assigned 0 under $f$ are adjacent, and $f(N[v])\geq2$ for all $v\in
V(G),$ where $N[v]$ stands for the set of neighbors of $v$ plus $v.$ The
weight of an OI$\{2\}$D-function is the value $\omega(f)=\Sigma_{u\in
V(G)}f(u)$, and the minimum weight of an OI$\{2\}$D-function of $G$ is the
outer independent $\{2\}$-domination number $\gamma_{oi\{2\}}(G)$ of $G$. In
this paper, we first determine the exact value of the outer
independent-$\{2\}$-domination number for perfect binary trees, an then we
provide a lower bound and an upper bound for the outer independent
$\{2\}$-domination number for trees in terms of the covering number, the
independence number, the number of leaves and the number of stems (support
vertices)

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.
Publiée
2025-09-23
Rubrique
Research Articles