Investigation of nonlinear Riemann-Liouville fractional differential equations with fractional nonlocal multi-point and integral boundary conditions

Résumé

We investigate the existence of solutions for a Riemann–Liouville fractional differential equation of order $\alpha \in (2, 3]$ equipped with fractional anti-periodic type nonlocal multi-point and Riemann–Liouville integral boundary conditions in a weighted space. The existence and uniqueness results for the given problem are respectively proved by applying the Leray-Schauder's alternative and the Banach's contraction mapping principle. The Ulam–Hyers stability for the given problem is also studied. Examples illustrating the main results are offered.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Références

R.L. Magin, Fractional Calculus in Bioengineering, Begell House Publishers, Danbury, CT, 2006.

D. Baleanu, J.A. T. Machado, A.C.J. Luo (eds.), Fractional Dynamics and Control, Springer, New York, 2012.

T. F. Nonnenmacher, R. Metzler, On the Riemann–Liouville fractional calculus and some recent applications, Fractals 3 (1995), 557–566.

N. H. Tuan, N.H. Tuan, D. Baleanu, T.N. Thach, On a backward problem for fractional diffusion equation with Riemann–Liouville derivative, Math. Methods Appl. Sci. 43 (2020), 1292–1312.

F. Mainardi, Some basic problems in continuum and statistical mechanics, in Fractals and Fractional Calculus in Continuum Mechanics, eds. A. Carpinteri and F. Mainardi, Springer, Berlin, 1997, pp. 291–348.

Y. Liu, Boundary value problems for impulsive Bagley–Torvik models involving the Riemann–Liouville fractional derivatives, Sao Paulo J. Math. Sci. 11 (2017), 148–188.

R. P. Agarwal, R. Luca, Positive solutions for a semipositone singular Riemann–Liouville fractional differential problem, Int. J. Nonlinear Sci. Numer. Simul. 20 (2019), 823–831.

R. P. Agarwal, S. Hristova, D. O’Regan, Exact solutions of linear Riemann–Liouville fractional differential equations with impulses, Rocky Mountain J. Math. 50 (2020), 779–791.

A. Tudorache, R. Luca, On a singular Riemann–Liouville fractional boundary value problem with parameters, Nonlinear Anal. Model. Control 26 (2021), 151–168.

M. Bohner, S. Hristova, Lipschitz stability for impulsive Riemann-Liouville fractional differential equations, Kragujevac J. Math. 48 (2024), 723–745.

N. Nyamoradi, B. Ahmad, Existence results for the generalized Riemann–Liouville type fractional Fisher-like equation on the half-line, Math. Methods Appl. Sci. 48 (2025), 1601–1616.

R. P. Agarwal, B. Ahmad, A. Alsaedi, Fractional-order differential equations with anti-periodic boundary conditions: a survey, Bound. Value Probl. 2017, Paper No. 173, 27 pp.

X. Guo, H. Zeng, J. Han, Existence of solutions for implicit fractional differential equations with p-Laplacian operator and anti-periodic boundary conditions (Chinese), Appl. Math. J. Chinese Univ. Ser. A 38 (2023), 64–72.

A. Dwivedi, G. Rani, G. R. Gautam, On generalized Caputo’s fractional order fuzzy anti periodic boundary value problem, Fract. Differ. Calc. 13 (2023), 211–229.

M. Alghanmi, R. P. Agarwal, B. Ahmad, Existence of solutions for a coupled system of nonlinear implicit differential equations involving ϱ-fractional derivative with anti periodic boundary conditions, Qual. Theory Dyn. Syst. 23 (2024), Paper No. 6, 17 pp.

B. Ahmad, Y. Alruwaily, A. Alsaedi, J. J. Nieto, Fractional integro-differential equations with dual anti-periodic boundary conditions, Differential Integral Equations 33 (2020), 181–206.

M. Feng, X. Zhang, W. Ge, Existence theorems for a second order nonlinear differential equation with nonlocal boundary conditions and their applications, J. Appl. Math. Comput. 33 (2010), 137-153.

L. Zheng, X. Zhang, Modeling and Analysis of Modern Fluid Problems. Mathematics in Science and Engineering, Elsevier/Academic Press: London, UK, 2017.

F. Nicoud, T. Schfonfeld, Integral boundary conditions for unsteady biomedical CFD applications, Int. J. Numer. Meth. Fluids 40 (2002), 457-465.

R. Ciegis, A. Bugajev, Numerical approximation of one model of the bacterial self-organization, Nonlinear Anal. Model. Control 17 (2012), 253-270.

T. V. Renterghem, D. Botteldooren, K. Verheyen, Road traffic noise shielding by vegetation belts of limited depth, J. Sound Vib. 331 (2012), 2404-2425.

E. Yusufoglu, I. Turhan, A mixed boundary value problem in orthotropic strip containing a crack, J. Franklin Inst. 349 (2012), 2750-2769.

R. Luca, Positive solutions for a system of fractional differential equations with p-Laplacian operator and multi-point boundary conditions, Nonlinear Anal. Model. Control. 23(5) (2018), 771–801.

B. Ahmad, S.K. Ntouyas, Nonlocal Nonlinear Fractional-Order Boundary Value Problems, World Scientific, Singapore, 2021.

B. Ahmad, B. Alghamdi, R.P. Agarwal, A. Alsaedi, Riemann–Liouville fractional integro-differential equations with fractional nonlocal multi-point boundary conditions. Fractals 30 (2022), 2240002.

N. Nyamoradi, B. Ahmad, Generalized fractional differential systems with Stieltjes boundary conditions, Qual. Theory Dyn. Syst. 22 (2023), Paper No. 6, 18 pp.

U. S. Tshering, E. Thailert, S. K. Ntouyas, Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions, AIMS Math. 9 (2024), 25849-25878.

S. M, Ulam, A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, no. 8. Interscience Publishers, New York-London, 1960.

D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222–224.

T. M, Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.

S. M. Jung, Hyers–Ulam–Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.

N. Lungu, S.A. Ciplea, Ulam-Hyers stability of Black-Scholes equation, Stud. Univ. Babes-Bolyai Math. 61 (2016), 467–472.

L. Xu, Q. Dong, G. Li, Existence and Hyers-Ulam stability for three-point boundary value problems with Riemann-Liouville fractional derivatives and integrals, Adv. Difference Equ. (2018), Paper No. 458, 17 pp.

K. Liu, J.R. Wang, Y. Zhou, D. O’Regan, Hyers-Ulam stability and existence of solutions for fractional differential equations with Mittag-Leffler kernel, Chaos Solitons & Fractals 132 (2020), 109534.

C. Chen, L. Liu, Q. Dong, Existence and Hyers-Ulam stability for boundary value problems of multi-term Caputo fractional differential equations, Filomat 37 (2023), 9679–9692.

H. Vu, J. M. Rassias, N. V. Hoa, Hyers-Ulam stability for boundary value problem of fractional differential equations with κ-Caputo fractional derivative, Math. Methods Appl. Sci. 46 (2023), 438–460.

A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Vol. 204, Elsevier, Amsterdam, 2006.

A. Granas, J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.

I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpath. J. Math. 26 (2010), 103–107

Publiée
2025-09-30
Rubrique
Advanced Computational Methods for Fractional Calculus