The The existence of solutions for nonlinear boundary value problems for second-order impulsive differential equations with a deviating argument
Résumé
In this paper, we study the existence of solutions for a second-order impulsive differential equation with a deviating argument by using the nonlinear alternative of Leray-Schauder.
Téléchargements
Références
R. P. Agarwal and D. O’Regan, Multiple nonnegative solutions for second order impulsive differential equations, Applied Mathematics and Computation. 114, 1, 51–59 (2000).
A. Anane, O. Chakrone, and L. Moutaouekkil, Periodic solutions for p-Laplacian neutral functional differential equations with multiple deviating arguments, Electron. J. Differ. Equ., 2012, 148, 1–12 (2012).
M. Benchohra, J. Henderson, and S. Ntouyas, Impulsive differential equations and inclusions, Hindawi Publ. Corp., New York (2006).
B. C. Dhage, On some nonlinear alternatives of Leray-Schauder type and functional integral equations, Archivum Mathematicum. 42, 1, 11–23 (2006).
D. J. Guo, Existence of solutions of boundary value problems for nonlinear second order impulsive differential equations in Banach spaces, Journal of mathematical analysis and applications. 181, 2, 407–421 (1994).
V. Lakshmikantham, D. Bainov, and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific. 6 (1989).
X. Li, X. Lin, D. Jiang, and X. Zhang, Existence and multiplicity of positive periodic solutions to functional differential equations with impulse effects, Nonlinear Analysis: Theory, Methods and Applications. 62, 4, 683–701 (2005).
D. O’Regan, Existence theory for nonlinear ordinary differential equations, Springer Science and Business Media. 398 (1997).
A. M. Samoilenko and N. A. Perestyuk, Impulsive differential equations, World Scientific (1995).
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



