Fixed Point results in b-Metric Spaces Using Meir-Keeler Contraction with Application to the Dynamic Behavior of a Multispan Uniform Continuous Beam
Resumen
In this paper, we establish new fixed-point results in the framework of b-metric spaces by utilizing Meir-Keeler type contractions. To demonstrate the applicability of our findings, we provide an illustrative example that confirms the validity of the established theorems. Furthermore, we apply the obtained results to solve a Volterra integral equation, which helps to analyze the dynamic behavior of a multispan uniform continuous beam. The presented solution gives the practical relevance of our theoretical results in mathematical modeling and engineering applications.
Descargas
Citas
Anjana, Mani, N., Megha, P. and Shukla, R. On pair of compatible mappings and coincidence point theorems in b-metric spaces. Int. J. Anal.Appl., 22 (2024), 176, 1–18.
Bakhtin, I. A., The contraction mapping in almost metric spaces, Funct. Ana. Gos. Ped. Inst. Unianowsk, 30, 26–37, (1989).
Banach, Stefan, Sur les op´erations dans les ensembles abstraits et leur application aux ´equations int´egrales, Fund. Math., 3(1), 133–181, (1922).
Berinde, V., Generalized Contractions in Quasimetric Spaces, Seminar on Fixed Point Theory, 3(9), 3–9, (1993).
Boyd, David William and Wong, James S. W., On nonlinear contractions, Proceedings of the American Mathematical Society, 20(2), 458–464, (1969).
Chauhan, S. S., New Contractive Conditions and Fixed Point, International Journal of Mathematical Analysis, 3(8), 385–392, (2009).
Ciric, Ljubomir B., Generalized contractions and fixed-point theorems, Publ. Inst. Math., 12(26), 19–26, (1971).
Czerwik, Stefan, Contraction mappings in b-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis, 1(1), 5–11, (1993).
Czerwik, Stefan, Nonlinear Set-Valued Contraction Mappings in b-Metric Spaces, Atti del Seminario Matematico e Fisico dell’Universit`a di Modena, 46, 263–276, (1998).
Gupta, Vishal, Ege, O. and Saini, Rajani, Some fixed point results in complete Gb -metric spaces, Dynamic Systems and Applications (DSA), 30 (2), 277-293, 2021.
Gupta, Vishal, Khan, Mohammad S., Singh, Balbir and Kumar, Sanjay, Existence and uniqueness of fixed point for Meir-Keeler type contractive condition in Menger spaces, Computational and Mathematical Methods, 3(2), e1134, 1-9, 2021.
Gupta, Vishal, Saini, Rajani and Khan, M.S., Some New Results of Weakly Contractive Mappings in Gb -Metric Space, Science and Technology Asia, 26(04), 2021, 126-134.
Gupta, Vishal, Saini, Rajani and Sharma, Naveen, Various new fixed point results in Gb-metric spaces, Proceedings of the Jangjeon Mathematical Society, 24(4), 2021, 583–593.
Gupta, Vishal, Chauhan, Surjeet Singh, and Sandhu, Ishpreet Kaur, Banach Contraction Theorem on Extended Fuzzy Cone b-metric Space, Thai Journal of Mathematics, 20(1), 177–194, (2022).
Gupta, Vishal and Saini, Rajani, Some new coupled fixed point results in complex value b-metric spaces, International Journal of System Assurance Engineering and Management, 14(6), 2579–2585, 2023.
Gupta, Vishal, Dhawan, Pooja and Kumari, Shilpa, Some Common Fixed Point Results for Generalized Contraction in b-metric-like Spaces, Boletim Sociedade Paranaense de Matematica, 43, 2025, 01-08.
Gupta, Vishal, Saini, Rajani and Thakur, Deepti, Picard sequence in complete Gb-metric spaces and fixed points results, Boletim Sociedade Paranaense de Matematica, 43, 2025, 01-08.
Hardy, G. E. and Rogers, T. D., A generalization of a fixed point theorem of Reich, Canadian Mathematical Bulletin, 16(2), 201–206, (1973).
Heinonen, Juha and others, Lectures on Analysis on Metric Spaces, Springer Science & Business Media, (2001).
Kadak, U˘gur, On the Classical Sets of Sequences with Fuzzy b-Metric, General Mathematics Notes, 23(1), (2014).
Kannan, R., Some results on fixed points—II, The American Mathematical Monthly, 76(4), 405–408, (1969).
Kumar, M., Mishra, L.N. and Mishra, S., Common fixed theorems satisfying (CLRST) property in b-metric spaces, Advances in dynamical systems and applications, 12(2), 135-147, (2017).
Kumar, M. and Araci, S. (ψ, α)-Meir-Keeler-Khan type fixed point theorems in partial metric spaces, Bol. Soc. Paran. Mat., 36(4), 149-157, (2018).
Kumar, M., Nagpal S. and Devi, S., Fixed point results for various contractive conditions in b-multiplicative metric space, J. Math. Comput. Sci., 11(6), 8046-8066, (2021).
Kumar, M., Kumar, P., Mutlu, A., Ramaswamy, R. and Abdelnaby,OAA., Ulam–Hyers Stability and Well-Posedness of Fixed Point Problems in C*-Algebra Valued Bipolar b-Metric Spaces, Mathematics 11(10)(2023), 2323.
Meir, Amram and Keeler, Emmett, A theorem on contraction mappings, Journal of Mathematical Analysis and Applications, 28(2), 326–329, (1969).
Singh, S. P. and others, Some results on fixed point theorems, Yokohama City University, (1969).
Sehgal, V. M., On fixed and periodic points for a class of mappings, Journal of the London Mathematical Society, 2(3), 571–576, (1972).
Tyagi, Praveen, Chauhan, S. S., Mani, Naveen and Shukla, Rahul, F-modular b-metric spaces and some analogies of classical fixed point theorems. Int. J., Anal. Appl. 22 (2024), 66.
Derechos de autor 2025 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



