Generalized Hermite-Hadamard type inequalities for MT-Non-convex functions via fractional integrals

  • Muhammad Imran Qureshi Department of Mathematics, COMSATS University Islamabad, Vehari Campus
  • Saima Sattar Department of Mathematics, COMSATS University Islamabad, Vehari Campus, Pakistan.
  • Asfand Fahad Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan, Pakistan
  • Nasir Ali Department of Mathematics, COMSATS University Islamabad, Vehari Campus, Pakistan.
  • Muhammad Shoaib Saleem Department of Mathematics, University of Okara, Okara 56300, Pakistan

Résumé

In this paper, we considered the class of \textit{MT-Non-convex functions}. We also established some new generalized fractional integral inequalities of Hermite-Hadamard type for \textit{MT-Non-convex} functions and to explore some new Hermite-Hadamard type inequalities in a form of generalized Riemann-Liouville fractional integrals as well as classical integrals, respectively. These newly established inequalities generalize some known results.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Références

Noor, M. A., Awan, M. U., Noor, K. I., and Postolache, M. (2016). Some integral inequalities for p-convex functions. Filomat, 30(9), 2435–2444.

Zhang, K. S., and Wan, J. P. (2007). p-convex functions and their properties. Pure Appl. Math., 23(1), 130–133.

Noor, M. A., Noor, K. I., Awan, M. U., and Costache, S. (2015). Some integral inequalities for harmonically h-convex functions. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 77(1), 5–16.

Liu, W. (2015). Ostrowski type fractional integral inequalities for MT-convex functions. Miskolc Mathematical Notes, 16(1), 249–256.

Iscan, I. (2016). Ostrowski type inequalities for p-convex functions. New Trends in Mathematical Sciences, 4(3), 140.

Mohammed, P. O. (2018). Some new Hermite-Hadamard type inequalities for MT-convex functions on differentiable coordinates. Journal of King Saud University-Science, 30(2), 258–262.

Katugampola, U. N. (2011). New approach to a generalized fractional integral. Applied Mathematics and Computation, 218(3), 860–865.

Thatsatian, A., Ntouyas, S. K., and Tariboon, J. (2019). Some Ostrowski type inequalities for p-convex functions via generalized fractional integrals. J. Math. Inequal., 13(2), 467–478.

Liu, W., Wen, W., and Park, J. (2016). Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals. J. Nonlinear Sci. Appl., 9(3), 766–777.

Park, J. (2015). Some Hermite-Hadamard type inequalities for MT-convex functions via classical and Riemann-Liouville fractional integrals. Appl. Math. Sci., 9(101), 5011–5025.

Iscan, I. (2016). Hermite-Hadamard type inequalities for p-convex functions. International Journal of Analysis and Applications, 11(2), 137–145.

Kunt, M., and Iscan, I. (2017). Hermite-Hadamard type inequalities for p-convex functions via fractional integrals. MJPAA, 3, 22–35.

Han, J., Mohammed, P. O., and Zeng, H. (2020). Generalized fractional integral inequalities of Hermite-Hadamard type for a convex function. Open Mathematics, 18(1), 794–806.

Chen, H., and Katugampola, U. N. (2017). Hermite-Hadamard and Hermite-Hadamard-Fej´er type inequalities for generalized fractional integrals. Journal of Mathematical Analysis and Applications, 446(2), 1274–1291.

Agarwal, P., Jleli, M., and Tomar, M. (2017). Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals. Journal of Inequalities and Applications, 2017(1), 1–10.

Yang, Y., Saleem, M. S., Ghafoor, M., and Qureshi, M. I. (2020). Fractional integral inequalities of Hermite-Hadamard type for differentiable generalized-convex functions. Journal of Mathematics, 2020.

Publiée
2025-09-24
Rubrique
Research Articles