INVERSION OF DOUBLE FOURIER INTEGRAL OF NON-LEBESGUE INTEGRABLE BOUNDED VARIATION FUNCTIONS
Résumé
This work proves pointwise convergence of the truncated
Fourier double integral of non-Lebesgue integrable bounded variation
functions. This leads to the Dirichlet-Jordan theorem proof for non-
Lebesgue integrable functions, which has not been sufficiently studied.
Note that recent contributions regarding this subject consider Lebesgue
integrable functions, [F. Móricz, 2015], [B. Ghodadra-V. Fulop, 2016].
Téléchargements
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



