On the uniqueness of fixed points for nonlinear-linear operator sums of Krasnosel’skii type

On the uniqueness of fixed points

Résumé

This paper extends Kellogg’s uniqueness fixed point theorem within the framework of Krasnosel’skii’s fixed point theorem. More precisely, we provide sufficient conditions on a linear operator B and a nonlinear mapping A to ensure the unique

ness of the fixed point of the mapping A+B. We also investigate the global asymp

totic stability of this fixed point in connection with the Belitskii-Lyubich conjecture.

An illustrative application of the main theoretical result is presented.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Biographie de l'auteur

Ahmed Zeghal, Abdelmalek Essaadi University, FST of Tangier

Laboratory of Mathematics and Applications

Professor

Publiée
2026-01-22
Rubrique
Advances in Algebra, Analysis, Optimization, and Modeling