<b>Some generalizations in certain classes of rings with involution</b> - doi: 10.5269/bspm.v29i1.11384

  • Shuliang Huang Chuzhou University

Résumé

Let R be a 2-torsion free sigma-prime ring with an involution sigma, I a nonzero sigma-ideal of R. In this paper we explore the commutativity of R satisfying any one of the properties: (i) d(x) oF(y) = 0 for all x, y ∈ I. (ii) [d(x), F(y)] = 0 for all x, y ∈ I. (iii) d(x) o F(y) = x o y for all x, y ∈ I. (iv) d(x)F(y) − xy ∈ Z(R) for
all x, y ∈ I. We also discuss (alpha,beta )-derivations of sigma-prime rings and prove that if G is an (alpha,beta)-derivation which acts as a homomorphism or as an anti-homomorphism on I, then G = 0 or G = beta on I.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Biographie de l'auteur

Shuliang Huang, Chuzhou University
Department of Mathematics
Chuzhou University, Chuzhou Anhui
239012, P. R. China
Rubrique
Articles