<b>On Wave Equations Without Global a Priori Estimates</b> - doi: 10.5269/bspm.v30i2.13451
Resumen
We investigate the existence and uniqueness of weak solution for a mixed problem for wave operator of the type:
L(u) =u_{tt}− \Delta u + |u|^{rho} − f, rho > 1.
The operator is defined for real functions u = u(x, t) and f = f(x, t) where (x, t) in Q a bounded cylinder of R^{n+1}.
The nonlinearity |u|^{rho} brings serious difficulties to obtain global a priori estimates by using energy method. The reason is because we have not a definite sign for \int_{Omega} |u|^{rho} u dx. To solve this problem we employ techniques of L. Tartar [16], see also D.H. Sattinger [12] and we succeed to prove the existence and uniqueness of global weak solution for an initial boundary value problem for the operator L(u), with restriction on the initial data u_0, u_1 and on the function f. With this restriction we are able to apply the compactness method and obtain the unique weak solution.
Descargas
Citas
G. O. Antunes, C. L. Frota, M. D. da Silva and L. A. Medeiros, Nonlinear wave equations with acoustic boundary conditions, submited for publications (2011).
H. Brezis, Analyse Fonctionelle (Theory et Applications), Dunod, Paris, (1999).
F. E. Browder, On nonlinear wave equations, Math. Zeit. 80 (1963), 249–264.
J. A. Goldstein, Time dependent hyperbolic equations, J. Funct. Anal. 4, No. 1 (1969), 31–49.
J. A. Goldstein, Semigroups and second order differential equations, J. Funct. Anal. 4, No. 1 (1969), 50–70.
K. Jörgens, Das Anfangswert problem in Grössen für eine Klasse nonlinearer Wellengleichungen, Math. Zeit. 77 (1961), 295–308.
K. Jörgens, Nonlinear wave equations, Dep. Math. Univ. of Colorado, Colorado, USA, (1970).
J. L. Lions and W. A. Strauss, Some nonlinear evolution equations, Bull. Soc. Math. de France 93 (1965), 43–96.
J. Leray and J. L. Lions, Quelques résultats de Visik sur les problèmes nonlinear par les méthodes de Minty-Browder, Bull. Soc. Math. de France 93 (1965), 97–107.
J. L. Lions, Quelques Méthodes de Résolution de Problèmes aux Limites non Linéaires, Dunod, Paris, France, (1969).
L. A. Medeiros, The initial value problems for nonlinear wave equations in Hilbert spaces, Transactions of the American Mathematical Society 36 (1969), 305–327.
D. H. Sattinger, On global solutions of nonlinear hyperbolic equations, Arch. Rational Mech. and Analysis 30 (1968), 148–172.
I. E. Segal, Nonlinear semigroups, Annals of Mathematics 78, No. 2, (1963), 339–364.
L. I. Schiff, Nonlinear meason theory of nuclear forces, IN. Physical Rev. 84 (1951), 1–9.
W. A. Strauss, On weak solutions of semilinear hyperbolic equations, An. Acad. Brasi. Ciencias (1970), 645–651.
L. Tartar, Topics in Nonlinear Analysis, Uni. Paris Sud, Dep. Math., Orsay, France, (1978).
V. Von Wahl, Klassiche Lösungen nichlinearer wellengengleichungen in Grössen, Math. Zeit. 12 (1969), 241-279.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).