$p$-$\mathcal{I}$-generator and $p_1$-$\mathcal{i}$-generator in bitopology
Résumé
In this article we have investigated the relations of $p$-$\mathcal{I}$-generator, $p_1$-$\mathcal{I}$-generator with $p$-Lindel\"{o}f and $p_1$-Lindel\"{o}f using $\tau_i$-codense, $(i,j)$-meager, $(i,j)$-nowhere dense and perfect mapping of bitopological space. The relations between $p$-compactness, $p$-Lindel\"{o}fness, $p_1$-Lindel\"{o}fness and topological ideal, $(i,j)$-meager, $(i,j)$-Baire space in bitopological space are investigated. Some properties are studied on product bitopology using perfect mapping. It can be found that bitopological space has many applications in real life problems. Hence, we hope that this theory will help to fulfill some interlinks which may have applications in near future.Téléchargements
Les données sur le téléchargement ne sont pas encore disponible.
Publiée
2018-04-01
Numéro
Rubrique
Research Articles
Copyright (c) 2017 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).