Coefficient estimates for a new subclass of analytic and bi-univalent functions by Hadamard product

Résumé

In this work, we introduce a new subclas of bi-univalent functions which is defined by Hadamard product and
subordination in the open unit disk. and find upper bounds for the second and third coefficients for functions in this new subclass. Further, we generalize and improve some of the previously published results.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Références

A. G. Alamoush and M. Darus, Coefficient bounds for new subclass of bi-univalent functions using Hadamard product, Acta Univ. Apulensis Math. Inform., 38, 153-161, (2014).

A. G. Alamoush and M. Darus, On coefficient estimates for bi-univalent functions of Fox-Wright functions, Far East J. Math. Sci., 89, 249-262, (2014).

R. M. Ali, S. K. Lee, V. Ravichandran and S. Subramaniam, Coefficient estimates for biunivalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25, 344-351, (2012).

M. K. Aouf, R. M. El-Ashwah and A. M. Abd-Eltawab, New subclasses of biunivalent functions involving Dziok-Srivastava operator, ISRN Math. Anal., Art. ID 387178, 1-5, (2013).

D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, Studia Univ. Babes-Bolyai Math., 31, 70-77, (1986).

D. A. Brannan, J. Clunie and W. E. Kirwan, Coefficient estimates for a class of starlike functions, Canad. J. Math., 22, 476-485, (1970)

S. Bulut, Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Math., 43, 59-65, (2013).

S. Bulut, Coefficient estimates for initial Taylor-Maclaurin coefficients for a subclass of analytic and bi-univalent functions defined by Al-Oboudi differential operator, Sci. World J., Art. ID 171039, 1-6, (2013).

M. Caglar, H. Orhan and N. Yagmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat, 27, 1165-1171, (2013).

E. Deniz and H. Orhan, The Fekete-Szeg¨o problem for a generalized subclass of analytic functions, Kyungpook Math. J., f50, 37-47, (2010).

P. L. Duren, Univalent Functions, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.

R. M. El-Ashwah, Subclasses of bi-univalent functions defined by convolution, J. Egyptian Math. Soc., 22, 348-351, (2014).

B. A. Frasin, Coefficient bounds for certain classes of bi-univalent functions, Hacet. J. Math. Stat., 43, 383-389, (2014).

B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24, 1569-1573, (2011).

S. P. Goyal and P. Goswami, Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives, J. Egyptian Math. Soc., 20, 179-182, (2012).

T. Hayami and S. Owa, Coefficient bounds for bi-univalent functions, Pan Amer. Math. J., 22, 15-26, (2012).

M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18, 63-68, (1967).

G. Murugusundaramoorthy, Coefficient estimates of bi-Bazilevic functions defined by Srivastava-Attiya operator, Le Matematiche, 69, 43-56, (2014).

H. Orhana, N. Mageshb and V. K. Balaji, Initial coeffcient Bounds for a general class of bi-univalent functions, Filomat 29, 1259-1267, (2015).

S. Porwal and M. Darus, On a new subclass of bi-univalent functions, J. Egyptian Math. Soc., 21, 190-193, (2013).

S. Prema and B. S. Keeerthi, Coefficient bounds for certain subclasses of analytic functions, J. Math. Anal., 4, 22-27, (2013).

W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. Ser., 2, 48-82, (1943).

H. M. Srivastava, S. Bulut, M. Caglar and N. Yagmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27, 831-842, (2013).

H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett., 23, 1188-1192, (2010).

H. M. Srivastava, G. Murugusundaramoorthy and K. Vijaya, Coefficient estimates for some families of bi-Bazilevic functions of the Ma-Minda type involvig the Hohlov operator, J. Classical Anal., 2, 167-181, (2013).

H. Tang, G. T. Deng and S. H. Li, Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions, J. Inequal. Appl., Art. ID 317, 1-10, (2013).

D. G. Yang and J. L. Liu, A class of analytic functions with missing coefficients, Abstr. Appl. Anal., Art. ID 456729, 1-16, (2011).

Publiée
2020-10-08
Rubrique
Articles