Direct method for solution variational problems by using Hermite polynomials

  • Ayatollah Yari Payame Noor University
  • Mirkamal Mirnia University of Tabriz

Resumen

‎In this approach‎, ‎one‎ computational method is presented for numerical approximation of variational problems‎. ‎This method with variable ‎coeffici‎ents is based on Hermite polynomials‎. ‎The properties of Hermite polynomials with the operational matrices of derivative and integration are used to reduce optimal control problems to the solution of linear algebraic equations‎. ‎Illustrative examples are included to demonstrate the validity and applicability of the technique‎.

CROSSMARK_Color_horizontal.svg

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Ayatollah Yari, Payame Noor University

mathematics

Citas

A. A. Yari, M. K. Mirnia, M. Lakestani,Investigation of optimal control problems and solving them using Bezier polynomials, Applied and Computational Mathematics, An International Journal 16(2) , 133-147,(2017).

A. A. Yari, M. K. Mirnia, M. Lakestani, A.heydari Solution of optimal control problems with payoff term and fixet state endpoint by using Bezier polynomials, Boletim da Sociedade Paranaense de Matematica, 35(1) , 247-267,(2017).

F. A. Aliev , Larin V.B. Optimization of Linear Control Systems: Analytical Methods and Computational Algorithms, Gordon and Breach Sci. London, (1998).

F Aliev, N Ismailov, Optimization Problems with Periodic Boundary Conditions and Boundary Control for Gas-Lift Wells, Journal of Mathematical Sciences, 208(5) , 467-476,(2015).

H. R. jaber An Efficient Algorithm for Solving Variational Problems Using Hermite Polynomials, Journal of Al Rafidain University College, 35, 311-327,(2015).

M. Avrile, Nonlinear programming Analysis and Methods, Englewood Cliffs, NJ: PrenticeHall; 1976.

J. Betts, Issues in the direct transcription of optimal control problem to sparse nonlinear programs, in: Bulirsch R, Kraft D, Eds., Computational Optimal Control, Germany: Birkhauser, 3-17,(1994).

J. Betts, Survey of numerical methods for trajectory optimization, J Guidance Control Dynamics, 21, 193-207(1998).

A. E. Jr. Bryson, Ho-Yu-Chi. Applied optimal control. Optimization, estimation and control, Braisdell Publishing Company, Waltham, Massachusetts, (1969).

S. Dixit, V. K. Singh, A. K. Singh, and O. P. Singh, Bernstein direct method for solving variational problems, International Mathematical Forum, 5(48), 2351-2370, (2010).

G. Elnegar, and M. A. Kazemi, Pseudospectral Chebyshev optimal control of constrained nonlinear dynamical systems, Comput Optim Applica., 11, 195-217, (1998).

G. Farin, Curves and Surfaces for Cagd A Practical Guide, Fifth Edition, (2012).

Z. Foroozandeh, and M. Shamsi, Solution of nonlinear optimal control problems by the interpolating scaling functions, Acta Astronautica, 72, 21-26, (2012).

M. Gachpazan, Solving of time Varying quadratic optimal control problems by using Bezier control points, Computational and Applied Mathematics 2, 367-379, (2011).

F. Ghomanjani, and M. Hadifarahi, Optimal control of switched systems based on Bezier control points, I. J. Intelligent Systems and Appications, 7, 16-22, (2012).

S. S. Hassen, Spectral Method and B-Spline Functions for Approximate Solution of Optimal Control Problem, Eng. and Tech. Journal, 28, 253-260, (2010).

C. H. Hsiao, Haar wavelet direct method for solving variational problems, Mathematics and Computers in Simulation, 64, 569-585, (2004).

H. Jaddu, Direct solution of nonlinear optimal control problems using quasilinearization and Chebyshev polynomials, Journal of the Franklin Institute, 339, 479-498, (2002).

H. Jaddu, E. Shimemura, Computation of optimal control trajectories using Chebyshev polynomials: parameterization and quadratic programming, Optimal Control Appl. Methods, 20, 21-42, (1999).

S. K. Kar, Optimal Control of a Linear Distributed Parameter System via Shifted Legendre Polynomials, World Academy of Science, Engineering and Technology, 44, 530-535, (2010).

E. Kreyszig, Introduction Functional Analysis with Applications, John Wiley and Sons Incorporated, (1978).

D. L. Kleiman, T. Fortmann, and M. Athans, On the design of linear systems with piecewiseconstant feedback gains, IEEE Trans Automat Contr., (13), 354-361, (1968).

P. Lancaster, Theory of Matrices, New York: Academic Press, (1969).

Nazim I. Mahmudov, Mark A. Mckibben, On Approximately Controllable Systems, Applied and Computational Mathematics, 15(3), 247-264, (2016).

H. R. Marzban, and M. Razzaghi, Hybrid functions approach for linearly constrained quadratic optimal control problems, Appl Math. Modell, 27, 471-485, (2003).

H. R. Marzban, and M. Razzaghi, Rationalized Haar approach for nonlinear constrined optimal control problems, Appl Math. Modell, 34, 174-183, (2010).

S. Mashayekhi, Y. Ordokhani, and M. Razzaghi, Hybrid functions approach for nonlinear constrained optimal control problems, Commun Nonlinear Sci Numer Simulat. 17, 1831-1843, (2012).

R. K. Mehra, and R. E. Davis, A generalized gradient method for optimal control problems with inequality constraints and singular arcs, IEEE Trans Automat Contr.,17, 69-72, (1972).

J. A. Nelder, R. A. Mead, A simplex method for function minimization, Comput J., 7, 308-313, (1965).

S. Alrawi, On the Numerical Solution for Solving Some Continuous Optimal control Problems, PhD Thesis,University of Almustansiriyah, (2004).

M. J. D. Powell, An efficient method for finding the minimum of a function of several variables without calculating the derivatives, Comput J., 7, 155-162, (1964).

M. Razzaghi, Y. Ordokhani, N. Haddadi, Direct method for variational problems by using hybrid of block-pulse and Bernoulli polynomials, Romanian Journal of Mathematics and Computer Science,2 ,1-17, (2012).

M. Razzaghi , and G. Elnagar, Linear quadratic optimal control problems via shifted Legendre state parameterization, Internat J. Systems Sci., 25, 393-399, (1994).

T. Rogalsky, Mathematics, Canadian Mennonite University, Winnipeg, Manitoba, Canada, (2013).

H. R. Sharif, M. A. Vali, M. Samavat, and A. A. Gharavisi, A new algorithm for optimal control of time-delay systems, Applied Mathematical Sciences, 5(12), 595-606, (2012).

A. K. Singh, V. K. Singh, and O. P. Singh, The Bernstein Operational Matrix of Integration Applied Mathematical Sciences, 3(49), 2427-2436, (2009).

M. H. N. Skandari, and E. Tohidi, Numerical Solution of a Class of Nonlinear Optimal Control Problems Using Linearization and Discretization, Applied Mathematics, 2, 646-652, (2001).

E. Tohidi, and M. H. N. Skandari, A New Approach for a Class of Nonlinear Optimal Control Problems Using Linear Combination Property of Intervals, Journal of Computations and Modelling, 2, 145-156, (2001).

Z. Kalateh Bojdia, S. Ahmadi-Asla and A. Aminataeib, Operational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coeffcients, Journal of Linear and Topological Algebra,2(2), 91- 103, (2013).

D. N. Burghes, and A. Graham, Introduction to control theory, including optimal control,Horwood, (1986).

D. Funaro, Polynomial Approximations of Dfferential Equations, Springer-Verlag, (1992).

Lions, J. L., Exact Controllability, Stabilizability, and Perturbations for Distributed Systems, Siam Rev. 30, 1-68, (1988).

Publicado
2020-10-11
Sección
Articles