Variations on statistical quasi Cauchy sequences
Résumé
In this paper, we introduce a concept of statistically $p$-quasi-Cauchyness of a real sequence in the sense that a sequence $(\alpha_{k})$ is statistically $p$-quasi-Cauchy if $\lim_{n\rightarrow\infty}\frac{1}{n}|\{k\leq n: |\alpha_{k+p}-\alpha_{k}|\geq{\varepsilon}\}|=0$ for each $\varepsilon>0$. A function $f$ is called statistically $p$-ward continuous on a subset $A$ of the set of real umbers $\mathbb{R}$ if it preserves statistically $p$-quasi-Cauchy sequences, i.e. the sequence $f(\textbf{x})=(f(\alpha_{n}))$ is statistically $p$-quasi-Cauchy whenever $\boldsymbol\alpha=(\alpha_{n})$ is a statistically $p$-quasi-Cauchy sequence of points in $A$. It turns out that a real valued function $f$ is uniformly continuous on a bounded subset $A$ of $\mathbb{R}$ if there exists a positive integer $p$ such that $f$ preserves statistically $p$-quasi-Cauchy sequences of points in $A$.Téléchargements
Les données sur le téléchargement ne sont pas encore disponible.
Publiée
2019-02-18
Numéro
Rubrique
Articles
Copyright (c) 2019 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).